Properties of finite-difference analog of one-dimensional Laplace operator on the graph
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 52-59
The finite-difference analogs of one-dimensional Laplace operator on the graph-star and the graph with a cycle are considered. At the same time differential operator characteristic continuity at its reduction to the finite-difference analog is essential: the structure of an eigenvalue set is similar to the structure of a proper value set of a differential operator, completeness of eigenvectors in the finite-dimensional space remains, the finite-difference analog of Laplace operator remains symmetric and positive.
Keywords:
one-dimensional Laplace operator, finite-difference analog of Laplace operator, characteristics of operator.
@article{VSPUI_2012_1_a6,
author = {O. A. Makhinova},
title = {Properties of finite-difference analog of one-dimensional {Laplace} operator on the graph},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {52--59},
year = {2012},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a6/}
}
TY - JOUR AU - O. A. Makhinova TI - Properties of finite-difference analog of one-dimensional Laplace operator on the graph JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 52 EP - 59 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a6/ LA - ru ID - VSPUI_2012_1_a6 ER -
%0 Journal Article %A O. A. Makhinova %T Properties of finite-difference analog of one-dimensional Laplace operator on the graph %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 52-59 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a6/ %G ru %F VSPUI_2012_1_a6
O. A. Makhinova. Properties of finite-difference analog of one-dimensional Laplace operator on the graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 52-59. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a6/
[1] Provotorov V. V., Sobstvennye funktsii kraevykh zadach na grafakh i prilozheniya, Nauchnaya kniga, Voronezh, 2008, 248 pp.
[2] Makhinova O. A., “Zadacha teploperenosa na grafe-zvezde”, Aktualnye problemy matematiki i informatiki (Trudy matem. fakulteta Voronezh. gos. un-ta), 2009, no. 3, 17–26
[3] Makhinova O. A., “Zadacha teploperenosa na grafe s tsiklom”, Sistemy upravleniya i informatsionnye tekhnologii, 2010, no. 1(39), 19–22
[4] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977, 456 pp.