Properties of finite-difference analog of one-dimensional Laplace operator on the graph
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 52-59
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The finite-difference analogs of one-dimensional Laplace operator on the graph-star and the graph with a cycle are considered. At the same time differential operator characteristic continuity at its reduction to the finite-difference analog is essential: the structure of an eigenvalue set is similar to the structure of a proper value set of a differential operator, completeness of eigenvectors in the finite-dimensional space remains, the finite-difference analog of Laplace operator remains symmetric and positive.
Keywords: one-dimensional Laplace operator, finite-difference analog of Laplace operator, characteristics of operator.
@article{VSPUI_2012_1_a6,
     author = {O. A. Makhinova},
     title = {Properties of finite-difference analog of one-dimensional {Laplace} operator on the graph},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {52--59},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a6/}
}
TY  - JOUR
AU  - O. A. Makhinova
TI  - Properties of finite-difference analog of one-dimensional Laplace operator on the graph
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 52
EP  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a6/
LA  - ru
ID  - VSPUI_2012_1_a6
ER  - 
%0 Journal Article
%A O. A. Makhinova
%T Properties of finite-difference analog of one-dimensional Laplace operator on the graph
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 52-59
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a6/
%G ru
%F VSPUI_2012_1_a6
O. A. Makhinova. Properties of finite-difference analog of one-dimensional Laplace operator on the graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 52-59. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a6/

[1] Provotorov V. V., Sobstvennye funktsii kraevykh zadach na grafakh i prilozheniya, Nauchnaya kniga, Voronezh, 2008, 248 pp.

[2] Makhinova O. A., “Zadacha teploperenosa na grafe-zvezde”, Aktualnye problemy matematiki i informatiki (Trudy matem. fakulteta Voronezh. gos. un-ta), 2009, no. 3, 17–26

[3] Makhinova O. A., “Zadacha teploperenosa na grafe s tsiklom”, Sistemy upravleniya i informatsionnye tekhnologii, 2010, no. 1(39), 19–22

[4] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1977, 456 pp.