Moving object classification using bayesian networks
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 109-118
Voir la notice de l'article provenant de la source Math-Net.Ru
Article is devoted to the moving object classifier. This classifier can be used to trace an object in a moving object detection system together with the other methods. The classifier is based on Bayesian network and uses an object's color distribution histogram. This feature allows to classify objects overlaid by other objects, rotated, reduced or partially distorted objects. The description and formalization of this approach is performed, its advantages and shortcomings identified during testing ate indicated as well.
Mots-clés :
classification
Keywords: moving object, tracing, bayesian network, network parameters, network structure.
Keywords: moving object, tracing, bayesian network, network parameters, network structure.
@article{VSPUI_2012_1_a11,
author = {A. A. Sultanbekov},
title = {Moving object classification using bayesian networks},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {109--118},
publisher = {mathdoc},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a11/}
}
TY - JOUR AU - A. A. Sultanbekov TI - Moving object classification using bayesian networks JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 109 EP - 118 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a11/ LA - ru ID - VSPUI_2012_1_a11 ER -
%0 Journal Article %A A. A. Sultanbekov %T Moving object classification using bayesian networks %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 109-118 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a11/ %G ru %F VSPUI_2012_1_a11
A. A. Sultanbekov. Moving object classification using bayesian networks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 109-118. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a11/