Moving object classification using bayesian networks
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 109-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Article is devoted to the moving object classifier. This classifier can be used to trace an object in a moving object detection system together with the other methods. The classifier is based on Bayesian network and uses an object's color distribution histogram. This feature allows to classify objects overlaid by other objects, rotated, reduced or partially distorted objects. The description and formalization of this approach is performed, its advantages and shortcomings identified during testing ate indicated as well.
Mots-clés : classification
Keywords: moving object, tracing, bayesian network, network parameters, network structure.
@article{VSPUI_2012_1_a11,
     author = {A. A. Sultanbekov},
     title = {Moving object classification using bayesian networks},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {109--118},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a11/}
}
TY  - JOUR
AU  - A. A. Sultanbekov
TI  - Moving object classification using bayesian networks
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 109
EP  - 118
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a11/
LA  - ru
ID  - VSPUI_2012_1_a11
ER  - 
%0 Journal Article
%A A. A. Sultanbekov
%T Moving object classification using bayesian networks
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 109-118
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a11/
%G ru
%F VSPUI_2012_1_a11
A. A. Sultanbekov. Moving object classification using bayesian networks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 109-118. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a11/

[1] Zubov V. I., Problema ustoichivosti protsessov upravleniya, Sudpromgiz, L., 1980, 253 pp.

[2] Khalanai A., Vekcler D., Kachestvennaya teoriya impulsnykh sistem, ed. V. P. Rubanik, Mir, M., 1971, 312 pp.; Halanay A., Wexler D., Teoria calitativǎ a sistemelor du impulsuri

[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966, 724 pp.

[4] Smit Dzh. M., Matematicheskie idei v biologii, pod red. i s predisl. Yu. I. Gildermana, Mir, M., 1970, 180 pp.; Smith J. M., Mathematical ideas in biology

[5] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp.

[6] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Izd-vo ONTI, M., 1935, 386 pp.

[7] Malkin I. G., Teoriya ustoichivosti dvizheniya, Gostekhizdat, M.; L., 1952, 432 pp.

[8] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp.

[9] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973, 272 pp.

[10] Aleksandrov A. Yu., Zhabko A. P., Ustoichivost dvizhenii diskretnykh dinamicheskikh sistem, Nauch.-issled. in-t khimii S.-Peterb. un-ta, SPb., 2003, 112 pp.

[11] Skalkina M. A., “O svyazi mezhdu ustoichivostyu reshenii differentsialnykh i konechno-raznostnykh uravnenii”, Prikl. matematika i mekhanika, 19:3 (1955), 287–294 | MR | Zbl

[12] Letov A. M., Ustoichivost nelineinykh reguliruemykh sistem, Gostekhizdat, M., 1955, 483 pp.

[13] Dudnikov E. E., “Set neironov s nelineinymi obratnymi svyazyami”, Avtomekhanika i telemekhanika, 1997, no. 6, 64–73

[14] Zubov V. I., “Asimptoticheskaya ustoichivost po pervomu, v shirokom smysle, priblizheniyu”, Dokl. RAN., 346:3 (1996), 295–296 | MR | Zbl

[15] Aleksandrov A. Yu., “Nekotorye usloviya ustoichivosti reshenii nelineinykh neavtonomnykh sistem”, Vestn. S.-Peterb. un-ta. Ser. 1: Matematika, mekhanika, astronomiya, 2:8 (1998), 3–6

[16] Aleksandrov A. Yu., Zhabko A. P., “O sokhranenii ustoichivosti pri diskretizatsii sistem obyknovennykh differentsialnykh uravnenii”, Sib. matem. zhurn., 51:3 (2010), 383–395 | MR | Zbl

[17] Aleksandrov A. Yu., Platonov A. V., “Postroenie funktsii Lyapunova dlya odnogo klassa sistem nelineinykh differentsialnykh uravnenii”, Differents. uravneniya, 43:10 (2007), 267–270 | MR | Zbl