Moving object classification using bayesian networks
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 97-108
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Article is devoted to the moving object classifier. This classifier can be used to trace an object in a moving object detection system together with the other methods. The classifier is based on Bayesian network and uses an object's color distribution histogram. This feature allows to classify objects overlaid by other objects, rotated, reduced or partially distorted objects. The description and formalization of this approach is performed, its advantages and shortcomings identified during testing ate indicated as well.
Mots-clés : classification
Keywords: moving object, tracing, bayesian network, network parameters, network structure.
@article{VSPUI_2012_1_a10,
     author = {D. A. Shelabin},
     title = {Moving object classification using bayesian networks},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {97--108},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a10/}
}
TY  - JOUR
AU  - D. A. Shelabin
TI  - Moving object classification using bayesian networks
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 97
EP  - 108
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a10/
LA  - ru
ID  - VSPUI_2012_1_a10
ER  - 
%0 Journal Article
%A D. A. Shelabin
%T Moving object classification using bayesian networks
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 97-108
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a10/
%G ru
%F VSPUI_2012_1_a10
D. A. Shelabin. Moving object classification using bayesian networks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 97-108. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a10/

[1] Shelabin D. A., Sevryukov S. Yu., “Razrabotka prototipa sistemy obnaruzheniya podvizhnykh ob'ektov v videopotokakh”, Protsessy upravleniya i ustoichivost, Trudy 40-i Mezhdunar. nauch. konferentsii aspirantov i studentov, eds. N. V. Smirnov, G. Sh. Tamasyan, Izd-vo S.-Peterb. gos. un-ta, SPb., 2009, 536–541

[2] Shelabin D. A., “SGM algoritm obnaruzheniya ob'ektov v videopotoke”, Protsessy upravleniya i ustoichivost, Trudy 41-i Mezhdunar. nauch. konferentsii aspirantov i studentov, eds. N. V. Smirnov, G. Sh. Tamasyan, Izd-vo S.-Peterb. gos. un-ta, SPb., 2010, 516–522

[3] Tulupev A. L., Nikolenko S. I., Sirotkin A. L., Baiesovskie seti. Logiko-veroyatnostnyi podkhod, Nauka, SPb., 2006, 607 pp.

[4] Murphy K. P., A brief introduction to graphical models and bayesian networks, Department of Computer Science, University of California, Berkeley, CA, 1998 URL: http://www.cs.ubc.ca/~murphyk/ Bayes/bnintro.html

[5] Goncharov M., Modifitsirovannyi drevovidnyi algoritm Baiesa dlya resheniya zadachi klassifikatsii, Spellabs IT company, 2007 URL http://www.spellabs.ru/download/AugmentedNaiveBayes.pdf

[6] Ben-Gal I., Bayesian Networks, Encyclopedia of Statistics in Quality and Reliability. John Wiley Sons, 2007 URL: http://www.eng.tau.ac.il/~bengal/BN.pdf