Design of $H_2$-optimal controllers for time-delay systems. Spectral approach
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 9-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of $H_2$ optimization of a linear time-invariant system with delays is considered. The design method based on a spectral approach is proposed. The use of such approach for single input problems can greatly simplify the analysis and synthesis of optimal controllers in comparison with “2-Riccati” and LMI methods which are usually applied. Such simplification is highly important in implementing algorithms of adaptive adjustment of control laws for various dynamic objects in the real-time mode due to the possible resource constraints of digital devices that are forming control inputs for dynamic objects and various embedded systems.
Keywords: linear systems, optimization, space $H_2$, transfer function, delays, control laws.
@article{VSPUI_2012_1_a1,
     author = {A. I. Arefina},
     title = {Design of $H_2$-optimal controllers for time-delay systems. {Spectral} approach},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {9--17},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a1/}
}
TY  - JOUR
AU  - A. I. Arefina
TI  - Design of $H_2$-optimal controllers for time-delay systems. Spectral approach
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 9
EP  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a1/
LA  - ru
ID  - VSPUI_2012_1_a1
ER  - 
%0 Journal Article
%A A. I. Arefina
%T Design of $H_2$-optimal controllers for time-delay systems. Spectral approach
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 9-17
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a1/
%G ru
%F VSPUI_2012_1_a1
A. I. Arefina. Design of $H_2$-optimal controllers for time-delay systems. Spectral approach. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 9-17. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a1/

[1] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975, 495 pp.

[2] Veremei E. I., “Spektralnyi podkhod k optimizatsii sistem upravleniya po normam prostranstv $H_2$ i $H_\infty$”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2004, no. 1, 48–59 | MR

[3] Veremei E. I., “Osobennosti resheniya zadach srednekvadratichnogo sinteza v srede MATLAB”, Trudy II Vseros. nauch. konferentsii «Proektirovanie nauchnykh i inzhenernykh prilozhenii v srede MATLAB», M., 2004, 864–883

[4] Doyle J., Francis B., Tannenbaum A., Feedback control theory, v. XI, Macmillan Publ. Co., New York, 1992, 227 pp. | MR

[5] Zhabko A. P., Kharitonov V. L., Metody lineinoi algebry v zadachakh upravleniya, ucheb. posobie, Izd-vo S.-Peterb. un-ta, SPb., 1993, 320 pp.

[6] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, ed. L. E. Elsgolts, Mir, M., 1967, 548 pp.; Bellman R., Cooke K. L., Differential-difference equations | MR

[7] Francis B., A Course in $H_\infty$ conrol theory, Springer-Verlag, Berlin, 1987, 150 pp. | MR