@article{VSPUI_2012_1_a1,
author = {A. I. Arefina},
title = {Design of $H_2$-optimal controllers for time-delay systems. {Spectral} approach},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {9--17},
year = {2012},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a1/}
}
TY - JOUR AU - A. I. Arefina TI - Design of $H_2$-optimal controllers for time-delay systems. Spectral approach JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 9 EP - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a1/ LA - ru ID - VSPUI_2012_1_a1 ER -
%0 Journal Article %A A. I. Arefina %T Design of $H_2$-optimal controllers for time-delay systems. Spectral approach %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 9-17 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a1/ %G ru %F VSPUI_2012_1_a1
A. I. Arefina. Design of $H_2$-optimal controllers for time-delay systems. Spectral approach. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 9-17. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a1/
[1] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975, 495 pp.
[2] Veremei E. I., “Spektralnyi podkhod k optimizatsii sistem upravleniya po normam prostranstv $H_2$ i $H_\infty$”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2004, no. 1, 48–59 | MR
[3] Veremei E. I., “Osobennosti resheniya zadach srednekvadratichnogo sinteza v srede MATLAB”, Trudy II Vseros. nauch. konferentsii «Proektirovanie nauchnykh i inzhenernykh prilozhenii v srede MATLAB», M., 2004, 864–883
[4] Doyle J., Francis B., Tannenbaum A., Feedback control theory, v. XI, Macmillan Publ. Co., New York, 1992, 227 pp. | MR
[5] Zhabko A. P., Kharitonov V. L., Metody lineinoi algebry v zadachakh upravleniya, ucheb. posobie, Izd-vo S.-Peterb. un-ta, SPb., 1993, 320 pp.
[6] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, ed. L. E. Elsgolts, Mir, M., 1967, 548 pp.; Bellman R., Cooke K. L., Differential-difference equations | MR
[7] Francis B., A Course in $H_\infty$ conrol theory, Springer-Verlag, Berlin, 1987, 150 pp. | MR