Finding stationary points of functions allowing nonhomogenious approximations of augment
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two approaches for constructing first degree approximations of a nonsmooth function (by means of exhausters and coexhausters) are studied. Advantages and disadvantages of each of them are discussed. A numerical method for finding stationary points of functions allowing nonhomogenious approximations of augment is presented. Convergence of this algorithm is proved.
Keywords: nonsmooth analysis, nondifferentiable optimization, codifferentiable functions, exhausters, coexhausters.
@article{VSPUI_2012_1_a0,
     author = {M. E. Abbasov},
     title = {Finding stationary points of functions allowing nonhomogenious approximations of augment},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {3--8},
     year = {2012},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/}
}
TY  - JOUR
AU  - M. E. Abbasov
TI  - Finding stationary points of functions allowing nonhomogenious approximations of augment
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 3
EP  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/
LA  - ru
ID  - VSPUI_2012_1_a0
ER  - 
%0 Journal Article
%A M. E. Abbasov
%T Finding stationary points of functions allowing nonhomogenious approximations of augment
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 3-8
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/
%G ru
%F VSPUI_2012_1_a0
M. E. Abbasov. Finding stationary points of functions allowing nonhomogenious approximations of augment. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 3-8. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/

[1] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.; Rockafellar R., Convex analysis

[2] Demyanov V. F., Malozemov V. N., Vvedenie v minimaks, Nauka, M., 1972, 368 pp.

[3] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980, 320 pp.

[4] Demyanov V. F., “Exhausters and convexificators – new tools in non-smooth analysis”, Quasi-differentibility and related topics, eds. V. F. Demyanov, A. M. Rubenov, Kluwer Acad. Publ., Dordrecht, 2000, 85–137 | MR | Zbl

[5] Demyanov V. F., “Exhausters of a positively homogeneous function”, Optimization, 45 (1999), 13–29 | DOI | MR | Zbl

[6] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp.

[7] Abbasov M. E., Demyanov V. F., “Usloviya ekstremuma negladkoi funktsii v terminakh ekzosterov i koekzosterov”, Trudy In-ta matematiki i mekhaniki Uralsk. otd. RAN, 15 (2009), 10–19