Finding stationary points of functions allowing nonhomogenious approximations of augment
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

Two approaches for constructing first degree approximations of a nonsmooth function (by means of exhausters and coexhausters) are studied. Advantages and disadvantages of each of them are discussed. A numerical method for finding stationary points of functions allowing nonhomogenious approximations of augment is presented. Convergence of this algorithm is proved.
Keywords: nonsmooth analysis, nondifferentiable optimization, codifferentiable functions, exhausters, coexhausters.
@article{VSPUI_2012_1_a0,
     author = {M. E. Abbasov},
     title = {Finding stationary points of functions allowing nonhomogenious approximations of augment},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {3--8},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/}
}
TY  - JOUR
AU  - M. E. Abbasov
TI  - Finding stationary points of functions allowing nonhomogenious approximations of augment
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2012
SP  - 3
EP  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/
LA  - ru
ID  - VSPUI_2012_1_a0
ER  - 
%0 Journal Article
%A M. E. Abbasov
%T Finding stationary points of functions allowing nonhomogenious approximations of augment
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2012
%P 3-8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/
%G ru
%F VSPUI_2012_1_a0
M. E. Abbasov. Finding stationary points of functions allowing nonhomogenious approximations of augment. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 3-8. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/