Finding stationary points of functions allowing nonhomogenious approximations of augment
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
Two approaches for constructing first degree approximations of a nonsmooth function (by means of exhausters and coexhausters) are studied. Advantages and disadvantages of each of them are discussed. A numerical method for finding stationary points of functions allowing nonhomogenious approximations of augment is presented. Convergence of this algorithm is proved.
Keywords:
nonsmooth analysis, nondifferentiable optimization, codifferentiable functions, exhausters, coexhausters.
@article{VSPUI_2012_1_a0,
author = {M. E. Abbasov},
title = {Finding stationary points of functions allowing nonhomogenious approximations of augment},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {3--8},
publisher = {mathdoc},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/}
}
TY - JOUR AU - M. E. Abbasov TI - Finding stationary points of functions allowing nonhomogenious approximations of augment JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2012 SP - 3 EP - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/ LA - ru ID - VSPUI_2012_1_a0 ER -
%0 Journal Article %A M. E. Abbasov %T Finding stationary points of functions allowing nonhomogenious approximations of augment %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2012 %P 3-8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/ %G ru %F VSPUI_2012_1_a0
M. E. Abbasov. Finding stationary points of functions allowing nonhomogenious approximations of augment. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2012), pp. 3-8. http://geodesic.mathdoc.fr/item/VSPUI_2012_1_a0/