@article{VSPUI_2011_4_a8,
author = {D. N. Moldovyan and N. A. Moldovyan},
title = {Structure peculiarities of the finite vector groups and their use in the cryptoscheme design},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {84--93},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a8/}
}
TY - JOUR AU - D. N. Moldovyan AU - N. A. Moldovyan TI - Structure peculiarities of the finite vector groups and their use in the cryptoscheme design JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2011 SP - 84 EP - 93 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a8/ LA - ru ID - VSPUI_2011_4_a8 ER -
%0 Journal Article %A D. N. Moldovyan %A N. A. Moldovyan %T Structure peculiarities of the finite vector groups and their use in the cryptoscheme design %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2011 %P 84-93 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a8/ %G ru %F VSPUI_2011_4_a8
D. N. Moldovyan; N. A. Moldovyan. Structure peculiarities of the finite vector groups and their use in the cryptoscheme design. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 84-93. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a8/
[1] Moldovyan N. A., “Gruppy vektorov dlya algoritmov elektronnoi tsifrovoi podpisi”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2009, no. 1, 96–102
[2] Doronin S. E., Moldovyanu P. A., Sinev V. E., “Vektornye konechnye polya: zadanie umnozheniya vektorov bolshoi chetnoi razmernosti”, Voprosy zaschity informatsii, 2008, no. 4(83), 2–7
[3] Moldovyan N. A., “Autentifikatsiya informatsii v ASU na osnove konechnykh grupp s mnogomernoi tsiklichnostyu”, Avtomatika i telemekhanika, 2009, no. 8, 177–190
[4] Moldovyanu P. A., Moldovyan D. N., Kho Ngok Zui, “Konechnye gruppy s chetyrekhmernoi tsiklichnostyu kak primitivy tsifrovoi podpisi”, Informatsionno-upravlyayuschie sistemy, 2010, no. 3, 61–68
[5] Moldovyan D. N., “Non-Commutative Finite Groups as Primitive of Public Key Cryptosystems”, Quasigroups and Related Systems, 18 (2010), 165–176 | MR | Zbl
[6] Menezes A. J., Van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, Boca Raton, FL, 1997, 780 pp. | MR | Zbl
[7] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | MR | Zbl
[8] Ko K. H., Lee S. J., Cheon J. H., Han J. W., Kang J. S., Park C., “New Public-Key Cryptosystems Using Braid Groups”, Advances in Cryptology – CRYPTO 2000, Lecture Notes in Computer Science (Springer-Verlag), 1880, 2000, 166–183 | DOI | MR | Zbl
[9] Lee E., Park J. H., “Cryptanalysis of the Public Key Encryption Based on Braid Groups”, Advances in Cryptology – EUROCRYPT 2003, Lecture Notes in Computer Science (Springer-Verlag), 2656, 2003, 477–489 | DOI | MR
[10] Myasnikov A., Shpilrain V., Ushakov A., “A Practical Attack on a Braid Group Based Cryptographic Protocol”, Advances in Cryptology – CRYPTO'05, Lecture Notes in Computer Science (Springer-Verlag), 3621, 2005, 86–96 | DOI | MR | Zbl
[11] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Fizmatlit, M., 1996, 287 pp.
[12] Dernova E. S., Kostina A. A., Moldovyanu P. A., “Konechnye gruppy matrits kak primitiv algoritmov tsifrovoi podpisi”, Voprosy zaschity informatsii, 2008, no. 3(82), 8–12
[13] Moldovyan D. N., Kupriyanov A. I., Kostina A. A., Zakharov D. V., “Zadanie nekommutativnykh konechnykh grupp vektorov dlya sinteza algoritmov tsifrovoi podpisi”, Voprosy zaschity informatsii, 2009, no. 4, 12–18