Structure peculiarities of the finite vector groups and their use in the cryptoscheme design
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 84-93
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Its is shown that problem of finding discrete logarithm to the multi-dimension base is an attractive primitive for designing fast signature schemes using computations in the finite vector groups. Other introduced primitive called problem of finding discrete logarithm in a hidden cyclic subgroup of the finite non-commutative group represents interest for designing fast public key agreement protocols and commutative encryption algorithms. For implementing such cryptoschemes finite non-commutative groups of four dimension vectors are proposed.
Keywords: digital signature, discrete logarithm problem, commutative encryption, finite group, noncommutative group, vector group, multidimension cyclicity.
@article{VSPUI_2011_4_a8,
     author = {D. N. Moldovyan and N. A. Moldovyan},
     title = {Structure peculiarities of the finite vector groups and their use in the cryptoscheme design},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {84--93},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a8/}
}
TY  - JOUR
AU  - D. N. Moldovyan
AU  - N. A. Moldovyan
TI  - Structure peculiarities of the finite vector groups and their use in the cryptoscheme design
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 84
EP  - 93
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a8/
LA  - ru
ID  - VSPUI_2011_4_a8
ER  - 
%0 Journal Article
%A D. N. Moldovyan
%A N. A. Moldovyan
%T Structure peculiarities of the finite vector groups and their use in the cryptoscheme design
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 84-93
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a8/
%G ru
%F VSPUI_2011_4_a8
D. N. Moldovyan; N. A. Moldovyan. Structure peculiarities of the finite vector groups and their use in the cryptoscheme design. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 84-93. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a8/

[1] Moldovyan N. A., “Gruppy vektorov dlya algoritmov elektronnoi tsifrovoi podpisi”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2009, no. 1, 96–102

[2] Doronin S. E., Moldovyanu P. A., Sinev V. E., “Vektornye konechnye polya: zadanie umnozheniya vektorov bolshoi chetnoi razmernosti”, Voprosy zaschity informatsii, 2008, no. 4(83), 2–7

[3] Moldovyan N. A., “Autentifikatsiya informatsii v ASU na osnove konechnykh grupp s mnogomernoi tsiklichnostyu”, Avtomatika i telemekhanika, 2009, no. 8, 177–190

[4] Moldovyanu P. A., Moldovyan D. N., Kho Ngok Zui, “Konechnye gruppy s chetyrekhmernoi tsiklichnostyu kak primitivy tsifrovoi podpisi”, Informatsionno-upravlyayuschie sistemy, 2010, no. 3, 61–68

[5] Moldovyan D. N., “Non-Commutative Finite Groups as Primitive of Public Key Cryptosystems”, Quasigroups and Related Systems, 18 (2010), 165–176 | MR | Zbl

[6] Menezes A. J., Van Oorschot P. C., Vanstone S. A., Handbook of Applied Cryptography, CRC Press, Boca Raton, FL, 1997, 780 pp. | MR | Zbl

[7] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | MR | Zbl

[8] Ko K. H., Lee S. J., Cheon J. H., Han J. W., Kang J. S., Park C., “New Public-Key Cryptosystems Using Braid Groups”, Advances in Cryptology – CRYPTO 2000, Lecture Notes in Computer Science (Springer-Verlag), 1880, 2000, 166–183 | DOI | MR | Zbl

[9] Lee E., Park J. H., “Cryptanalysis of the Public Key Encryption Based on Braid Groups”, Advances in Cryptology – EUROCRYPT 2003, Lecture Notes in Computer Science (Springer-Verlag), 2656, 2003, 477–489 | DOI | MR

[10] Myasnikov A., Shpilrain V., Ushakov A., “A Practical Attack on a Braid Group Based Cryptographic Protocol”, Advances in Cryptology – CRYPTO'05, Lecture Notes in Computer Science (Springer-Verlag), 3621, 2005, 86–96 | DOI | MR | Zbl

[11] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Fizmatlit, M., 1996, 287 pp.

[12] Dernova E. S., Kostina A. A., Moldovyanu P. A., “Konechnye gruppy matrits kak primitiv algoritmov tsifrovoi podpisi”, Voprosy zaschity informatsii, 2008, no. 3(82), 8–12

[13] Moldovyan D. N., Kupriyanov A. I., Kostina A. A., Zakharov D. V., “Zadanie nekommutativnykh konechnykh grupp vektorov dlya sinteza algoritmov tsifrovoi podpisi”, Voprosy zaschity informatsii, 2009, no. 4, 12–18