Keywords: wave equation of long waves, travelling nerve pulse, action potential, piecewise linear model.
@article{VSPUI_2011_4_a7,
author = {V. S. Novoselov},
title = {On simulation modelling of nerve impulse},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {73--83},
year = {2011},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a7/}
}
TY - JOUR AU - V. S. Novoselov TI - On simulation modelling of nerve impulse JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2011 SP - 73 EP - 83 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a7/ LA - ru ID - VSPUI_2011_4_a7 ER -
V. S. Novoselov. On simulation modelling of nerve impulse. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 73-83. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a7/
[1] Rosenblatt F., Principles of neurodynamics
[2] Vedenov A. A., Modelirovanie elementov myshleniya, Nauka, M., 1988, 160 pp. (Sovremennye problemy fiziki)
[3] Korenev G. V., Vvedenie v mekhaniku cheloveka, Nauka, M., 1977, 264 pp.
[4] Filippov A. T., Mnogolikii soliton, Nauka, M., 1990, 298 pp.
[5] Novoselov V. S., Statisticheskaya dinamika, ucheb. posobie, Izd-vo S.-Peterb. gos. un-ta, SPb., 2009, 393 pp.
[6] Novoselov V. S., “Smeshannoe dlinnovolnovoe uravnenie”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2010, no. 1, 65–72 | MR
[7] Hirota R., “Exact $N$-soliton solutions of the wave equation of long waves in shallow-water and nonlinear lattices”, J. Math. Phys., 14:7 (1973), 810–814 | DOI | MR | Zbl
[8] Kunin I. L., Teoriya uprugikh sred s mikrostrukturoi, Nauka, M., 1975, 416 pp.
[9] Zakharov V. E., “Metod obratnoi zadachi rasseyaniya”: Kunin I. L., Teoriya uprugikh sred s mikrostrukturoi, Nauka, M., 1975, 226–273
[10] Makhankov P. G., “Solitony i chislennyi eksperiment”, Fizika elementarnykh chastits atomnogo yadra, 4:1 (1983), 123–180
[11] Faddeev L. D., Takhtadzhyan L. A., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986, 528 pp.
[12] Dodd R., Eilbeck J., Gibbon J., Morris H., Wave Equations
[13] Takahashi R., Ohkawa T., “Numerical experiment on interaction of solitons describing recurrence of initial state”, Computational Mechanics (Springer-Verlag), 1989, 273–281 | DOI
[14] Balashov V., Bladimirov V., Solitary waves in dispersive complex media, Springer, Berlin, 2005, 292 pp. | MR
[15] Riznichenko G. Yu., Matematicheskie modeli v biofizike i ekologii, In-t kompyut. tekhnologii, M.; Izhevsk, 2003, 184 pp.
[16] Zhabotinskii A. M., Kontsentratsionnye avtokolebaniya, Nauka, M., 1974, 179 pp.
[17] Krinskii V. I., Medvinskii A. B., Panfilov A. V., Evolyutsiya avtovolnovykh vikhrei, Ser. Matematika, kibernetika, no. 8, Znanie, M., 1986, 48 pp.
[18] Pokrovskii A. N., Protsessy upravleniya v nervnykh kletkakh, Izd-vo Leningr. un-ta, L., 1987, 85 pp.
[19] Keener J., Sneyd J., “Mathematical physiology”, Interdisciplinary Applied Mathematic, 8 (1998), 268–296 | DOI | MR
[20] Tamm I. E., Osnovy teorii elektrichestva, ucheb. posobie dlya vuzov, Nauka, M., 1989, 504 pp.
[21] Novoselov V. S., Korolev V. S., Analiticheskaya mekhanika upravlyaemoi sistemy, ucheb. posobie, Izd-vo S.-Peterb. gos. un-ta, SPb., 2005, 298 pp.