Schur’s rational approximation of Schur’s functions
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 63-72
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of approximating elements from the class $H_2^+$ of the analytic functions in the closed unit disk $U$ assuming only real values on the segment [0,1] is investigated. As approximant class is taken to be ${\mathcal H}_{n}^{+}$ which is the class of irreducible real rational functions with the degrees of a numerator and a denominator not greater $n$. It is proved that if $f\in H_2^+$ and $f\notin {\mathcal H}_{k}^{+}$ where $k then any local minimizer of nonlinear programme $\displaystyle \|{f-g}\|^2\longrightarrow \min_{g\in {\mathcal H}_{n}^{+}}$ does not belong to ${\mathcal H}_{m}^{+}$, where $m. The result is expanded to the class $S^+$ of Schur's functions selected from $H_2^+$ by the condition $\sup_{z\in U} |f(z)|\leq 1$. If ${\mathcal S}_n^+$ is a Schur's subclass of ${\mathcal H}_{n}^{+}$ then it is proved that, when $f\in S^+$ and $f\notin {\mathcal S}_{k}^{+}$, where $k, any local minimizer of non linear programme $\displaystyle \|{f-g}\|^2\longrightarrow \min_{g\in {\mathcal S}_{n}^{+}}$ does not belong to ${\mathcal S}_{m}^{+}$, where $m.
Keywords: unit disk, Schur’s function, approximation, rational function, Schur’s algorithm.
@article{VSPUI_2011_4_a6,
     author = {V. S. Mikheev},
     title = {Schur{\textquoteright}s rational approximation of {Schur{\textquoteright}s} functions},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {63--72},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a6/}
}
TY  - JOUR
AU  - V. S. Mikheev
TI  - Schur’s rational approximation of Schur’s functions
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 63
EP  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a6/
LA  - ru
ID  - VSPUI_2011_4_a6
ER  - 
%0 Journal Article
%A V. S. Mikheev
%T Schur’s rational approximation of Schur’s functions
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 63-72
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a6/
%G ru
%F VSPUI_2011_4_a6
V. S. Mikheev. Schur’s rational approximation of Schur’s functions. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 63-72. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a6/

[1] Schur I., “Uber potenzreihen, die im innern des einheitskreises beschrankt sind”, i. j. reine angew. math. Birkhäuser Verlag, 147 (1917), 205–232

[2] Padé H., “Sur la représentation approchées d'une fonction par des fractions rationnelles”, Annales scientifique de l'É.N.S. 1892. 3ieme série, 9 (1892), 3–93 | MR | Zbl

[3] Bakonyi M., Constantinescu T., Schur's Algorithm and Several Applications, J. Wiley Sons, Canada, 1995, 190 pp.

[4] Lunot V., Techniques d'approximation rationelle en synthèse fréquentielle: problème de Zolotarev et algorithme de Schur, Thèse présentée pour obtenir le grade de Docteur de l'Université De Provance, Université de Provance, Nice, 2008, 165 pp.

[5] Baratchart L., Olivi M., Wielonsky F., On a rational approximation problem in the real Hardy space $H_2$, INRIA, Sophia-Antipolis, 2004, 22 pp.

[6] Mikheev S. E., Nelineinye metody v optimizatsii, Izd-vo S.-Peterb. gos. un-ta, SPb., 2001, 276 pp.