Schur’s rational approximation of Schur’s functions
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 63-72
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of approximating elements from the class $H_2^+$ of the analytic functions in the closed unit disk $U$ assuming only real values on the segment [0,1] is investigated. As approximant class is taken to be ${\mathcal H}_{n}^{+}$ which is the class of irreducible real rational functions with the degrees of a numerator and a denominator not greater $n$. It is proved that if $f\in H_2^+$ and $f\notin {\mathcal H}_{k}^{+}$ where $k$ then any local minimizer of nonlinear programme $\displaystyle \|{f-g}\|^2\longrightarrow \min_{g\in {\mathcal H}_{n}^{+}}$ does not belong to ${\mathcal H}_{m}^{+}$, where $m$. The result is expanded to the class $S^+$ of Schur's functions selected from $H_2^+$ by the condition $\sup_{z\in U} |f(z)|\leq 1$. If ${\mathcal S}_n^+$ is a Schur's subclass of ${\mathcal H}_{n}^{+}$ then it is proved that, when $f\in S^+$ and $f\notin {\mathcal S}_{k}^{+}$, where $k$, any local minimizer of non linear programme $\displaystyle \|{f-g}\|^2\longrightarrow \min_{g\in {\mathcal S}_{n}^{+}}$ does not belong to ${\mathcal S}_{m}^{+}$, where $m$.
Keywords:
unit disk, Schur’s function, approximation, rational function, Schur’s algorithm.
@article{VSPUI_2011_4_a6,
author = {V. S. Mikheev},
title = {Schur{\textquoteright}s rational approximation of {Schur{\textquoteright}s} functions},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {63--72},
publisher = {mathdoc},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a6/}
}
TY - JOUR AU - V. S. Mikheev TI - Schur’s rational approximation of Schur’s functions JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2011 SP - 63 EP - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a6/ LA - ru ID - VSPUI_2011_4_a6 ER -
%0 Journal Article %A V. S. Mikheev %T Schur’s rational approximation of Schur’s functions %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2011 %P 63-72 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a6/ %G ru %F VSPUI_2011_4_a6
V. S. Mikheev. Schur’s rational approximation of Schur’s functions. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 63-72. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a6/