On a class of nonChebyshev function systems allowing to use Markov theorem in the finite moment problem
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 57-62
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The class indicated in the header is formed by degrees of a unimodal continuous function, whose several successive powers of the left branch on the corresponding interval of its definition is Chebyshev system. It turns out that both maximum and minimum of a specific integral with some unknown function can be obtained using the Markov theorem in which the weights and nodes are found only with the help of the left branch. The need for such estimates naturally arises from the simplest problem of nonlinear dynamics such as iterations of a unimodal function with unknown distribution of the initial value and its known polynomial moments of the next iteration step.
Keywords: moment problem, Chebyshev system of function, Markov theorem.
@article{VSPUI_2011_4_a5,
     author = {R. N. Miroshin},
     title = {On a class of {nonChebyshev} function systems allowing to use {Markov} theorem in the finite moment problem},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {57--62},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a5/}
}
TY  - JOUR
AU  - R. N. Miroshin
TI  - On a class of nonChebyshev function systems allowing to use Markov theorem in the finite moment problem
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 57
EP  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a5/
LA  - ru
ID  - VSPUI_2011_4_a5
ER  - 
%0 Journal Article
%A R. N. Miroshin
%T On a class of nonChebyshev function systems allowing to use Markov theorem in the finite moment problem
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 57-62
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a5/
%G ru
%F VSPUI_2011_4_a5
R. N. Miroshin. On a class of nonChebyshev function systems allowing to use Markov theorem in the finite moment problem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 57-62. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a5/

[1] Karlin S., Studden W. J., Tchebycheff systems: with applications in analysis and statistics

[2] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi. Idei i problemy P. L. Chebysheva i A. A. Markova i ikh dalneishee razvitie, Nauka, M., 1973, 551 pp.

[3] Grodzenskii S. Ya., Andrei Andreevich Markov, 1856–1922: [Rus. matematik], Nauka, M., 1987, 256 pp.

[4] Miroshin R. N., “Prostoe dokazatelstvo teoremy Markova v obobschennoi probleme momentov”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2009, no. 1, 91–99

[5] Schuster H. G., Deterministic chaos

[6] Miroshin R. N., “Prosteishaya obratnaya zadacha nelineinoi dinamiki”, Vestn. S.-Peterb. un-ta. Ser. 1: Matematika, mekhanika, astronomiya, 1996, no. 2, 44–49

[7] Miroshin R. N., Sluchainye protsessy i polya, ucheb. posobie, Izd-vo S.-Peterb. gos. un-ta, SPb., 2003, 283 pp.