On simplification of integral payoff in differential games with random duration
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 47-56
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of differential games with random duration is considered. Conditions for simplification of mathematical expectation of the player’s integral payoff are given. Theoretical results are illustrated with the example of a differential game of pollution control.
Keywords: differential games, integral payoff, random duration, differential game of pollution control.
@article{VSPUI_2011_4_a4,
     author = {S. Yu. Kostyunin and E. V. Shevkoplyas},
     title = {On simplification of integral payoff in differential games with random duration},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {47--56},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a4/}
}
TY  - JOUR
AU  - S. Yu. Kostyunin
AU  - E. V. Shevkoplyas
TI  - On simplification of integral payoff in differential games with random duration
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 47
EP  - 56
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a4/
LA  - ru
ID  - VSPUI_2011_4_a4
ER  - 
%0 Journal Article
%A S. Yu. Kostyunin
%A E. V. Shevkoplyas
%T On simplification of integral payoff in differential games with random duration
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 47-56
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a4/
%G ru
%F VSPUI_2011_4_a4
S. Yu. Kostyunin; E. V. Shevkoplyas. On simplification of integral payoff in differential games with random duration. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 47-56. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a4/

[1] Petrosyan L. A., Murzov N. V., “Teoretiko-igrovye problemy v mekhanike”, Litovskii matematicheskii sbornik, VI-3 (1966), 423–433 | Zbl

[2] Petrosyan L. A., Shevkoplyas E. V., “Kooperativnye differentsialnye igry so sluchainoi prodolzhitelnostyu”, Vestn. S.-Peterb. un-ta. Ser. 1: Matematika, mekhanika, astronomiya, 2000, no. 4, 18–23

[3] Shevkoplyas E. V., “Uravnenie Gamiltona–Yakobi–Bellmana v differentsialnykh igrakh so sluchainoi prodolzhitelnostyu”, Matematicheskaya teoriya igr i ee prilozheniya, 1:2 (2009), 98–118

[4] Yaari M. E., “Uncertain Lifetime, Life Insurance, and the Theory of the Consumer”, The Review of Econimic Studies, 32:2 (1965), 137–150 | DOI

[5] Boukas E. K., Haurie A., Michel P., “An Optimal Control Problem with a Random Stopping Time”, J. of Optimization Theory and Applications, 64:3 (1990), 471–480 | DOI | MR | Zbl

[6] Chang F. R., Stochastic Optimization in Continuous Time, Cambridge Univ. Press, New York, 2004, 326 pp. | MR

[7] Breton M., Zaccour G., Zahaf M., “A Differential Game of Joint Implementation of Environmental Projects”, Automatica, 41:10 (2005), 1737–1749 | DOI | MR | Zbl

[8] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 624 pp.

[9] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011, 688 pp.

[10] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, per. s angl. B. I. Golubova, ed. P. L. Ulyanov, Mir, M., 1967, 234 pp.

[11] Zorich V. A., Matematicheskii analiz, v 2 ch.: uchebnik, ed. 4-e, ispr., MTsNMO, M., 2002, 664 pp.

[12] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 392 pp.