Time- and space-efficient evaluation of a complex exponential function on machine Schonhage
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 105-118
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quasi-linear time and linear space algorithms for evaluation of a complex exponential function on machine Schonhage are presented. These algorithms are based on a modified method of fast evaluation of an exponential function and on a modified method of binary splitting for hypergeometris series.
Keywords: exponential function, constructive real functions, quasi-linear time complexity, linear space complexity.
@article{VSPUI_2011_4_a10,
     author = {S. V. Yakhontov},
     title = {Time- and space-efficient evaluation of a complex exponential function on machine {Schonhage}},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {105--118},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a10/}
}
TY  - JOUR
AU  - S. V. Yakhontov
TI  - Time- and space-efficient evaluation of a complex exponential function on machine Schonhage
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 105
EP  - 118
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a10/
LA  - ru
ID  - VSPUI_2011_4_a10
ER  - 
%0 Journal Article
%A S. V. Yakhontov
%T Time- and space-efficient evaluation of a complex exponential function on machine Schonhage
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 105-118
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a10/
%G ru
%F VSPUI_2011_4_a10
S. V. Yakhontov. Time- and space-efficient evaluation of a complex exponential function on machine Schonhage. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 105-118. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a10/

[1] Schonhage A., Grotefeld A. F. W., Vetter E., Fast algorithms. A multitape Turing machine implementation, Brockhaus AG, Leipzig, 1994, 298 pp.

[2] Ko K., Complexity theory of real functions, Birkhauser, Boston, 1991, 310 pp. | MR

[3] Yakhontov S. V., $FLINSPACE$ konstruktivnye veschestvennye chisla i funktsii, LAMBERT Academic Publ., Saarbrucken, 2010, 167 pp.

[4] Karatsuba E. A., “Bystrye vychisleniya transtsendentnykh funktsii”, Problemy peredachi informatsii, 27:4 (1991), 76–99 | MR

[5] Haible B., Papanikolaou T., “Fast multiple-presicion evaluation of series of rational numbers”, Proc. of the Third Intern. Symposium on Algorithmic Number Theory (June 21–25), 1998, 338–350 | DOI | MR | Zbl

[6] Aho A., Hopcroft J., Ullman J., The design and analysis of computer algorithms | MR

[7] Kosovskaya T. M., Kosovskii N. K., “Prinadlezhnost klassu $FP$ dvazhdy polinomialnykh paskalevidnykh funktsii nad podprogrammami iz $FP$”, Kompyuternye instrumenty v obrazovanii, 2010, no. 3, 3–7