Numerical simulation of large-area fast photodetectors
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 14-31
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Many complex physical effects (fringe fields, saturation, emission properties of compaund materials and space charge relaxation) have been taken into account in modeling a new generation of photodetectors based on micro channel plates. The results of numerical simulations have good agreement with experimental data and publication of other authors.
Mots-clés : photodetector, microchannel plate
Keywords: modeling, Monte Catlo methods.
@article{VSPUI_2011_4_a1,
     author = {V. Ya. Ivanov},
     title = {Numerical simulation of large-area fast photodetectors},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {14--31},
     year = {2011},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a1/}
}
TY  - JOUR
AU  - V. Ya. Ivanov
TI  - Numerical simulation of large-area fast photodetectors
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 14
EP  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a1/
LA  - ru
ID  - VSPUI_2011_4_a1
ER  - 
%0 Journal Article
%A V. Ya. Ivanov
%T Numerical simulation of large-area fast photodetectors
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 14-31
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a1/
%G ru
%F VSPUI_2011_4_a1
V. Ya. Ivanov. Numerical simulation of large-area fast photodetectors. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 4 (2011), pp. 14-31. http://geodesic.mathdoc.fr/item/VSPUI_2011_4_a1/

[1] Laprade B. N., “Development of an ultrasmall-pore microchannel plate for space sciences application”, Proc. SPIE, v. 2808, 1996, 72–85 | DOI

[2] Siegmund O. W., Microchannel plate imaging detector technologies for UV instriments URL: www.stsci.edu/stsci/meetings/space_detectors/ossyrew.htm

[3] Tremsin A. S., Mildner F. R., Feller W. B., Downing R. G., “Very Compact High Performance Microchannel Plate Thermal Neutron Collimators”, IEEE Nuclear Science Symp. and Medical Imaging Conf. (Portland, Oregon, Oct. 2003), 1143–1147

[4] Tremsin A. S., “Efficiency optimization of microchannel plate neutron imaging detectors”, Nuclear Instruments and Methods A, 539:1–2 (2005), 278–311 | DOI

[5] Coeck S., Beck M., Delaure B. e. a., “Microchannel plate responce to high-intensity ion bunches”, Nuclear Instruments and Methods A, 557 (2006), 516–522 | DOI

[6] Kolousek G., Adlassnig K.-P., Bogl K. e. a., “An Overview of CADIAG-4: A Medical Diagnostic and Therapeutic Consultation System”, Proc. Annu. Symp. Comput. Appl. Med. Care (Oct. 28–Nov. 1, 1995. New Orlean, Louisiana), 1995, 963–966

[7] Shimanskaya A. V., Evdokimov V. N., “Effect of parameters of multidyne screen system on image quality”, Sov. J. Opt. Technol., 52:7, July (1985), 393–394

[8] Hoenderken T. H., Hagen C. W., Barth J. E. e. a., “Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier”, J. Vac. Sci. Technol. B, 19:3, May/June (2001), 843–850 | DOI

[9] Kravchuk G. S., Petrova I. R., Sen Yu. V. i dr., “Optimizatsiya parametrov elektronno-opticheskikh sistem s kanalovym usileniem yarkosti”, Optiko-mekhanicheskaya promyshlennost, 1988, no. 7, 19–20

[10] Petrova I. R., Flegontov Yu. A., “Issledovanie kharakteristik kanalovogo umnozhitelya pri usilenii elektronnogo potoka v prisutstvii magnitnogo polya”, Optiko-mekhanicheskaya promyshlennost, 1988, no. 4, 16–19

[11] Kravchuk G. S., Leonov N. B., Sen Yu. V., Tyutikov A. M., “Fizicheskie prichiny formirovaniya cetki na elektronnom izobrazhenii MKP i metodika issledovaniya yavleniya”, Optiko-mekhanicheskaya promyshlennost, 1988, no. 5, 6–9 | MR

[12] Tremsin A. S., Lockwood H. F., Beulieu D. R. e. a., “3D microscopic model of electron amplification in microchannel amplifiers for maskless lithography”, Physics Procedia, 1 (2008), 565–572 | DOI

[13] Shiltsev V., “New possibilities for beam-beam and space-charge compensation: MCP gun and electron columns”, Proc. PAC07 (Albuquerque, New Mexico, USA), 2007, 1159–1160

[14] Guest A. J., “Un modèle math ematique pour l' etude par ordinateur du fonctionnement d'une galette de microcanaux”, Acta Electronica, 14:1 (1971), 79–97

[15] Guest A. J., “Modeling microchannel plate performance in thin flat CRTs”, SID Proc., 29:3, April (1989), 193–196

[16] Wiza J. L., “Microchannel plate detectors”, Nuclear Instruments and Methods A, 162 (1979), 587–601 | DOI

[17] Eberhardt E. H., “Gain model for microchannel plates”, Applied Optics, 18:9, May (1979), 1418–1423 | DOI

[18] Gruntman M. A., “Koordinatno-chuvstvitelnye detektory na osnove mikrokanalnykh plastin”, obzor, Pribory i tekhnika eksperimenta, 1984, no. 1, 14–29

[19] Advanced in image picking and dysplay, v. 1

[20] Giudicotti L., “Analytical, stady-state model of gain saturation in channel electron multipliers”, Nuclear Instruments and Methods A, 480 (2002), 670–679 | DOI

[21] Shimanskaya A., “Computational modeling of stochastic processes in electron amplifiers”, J. of Computational Electronics, 9 (2010), 93–102 | DOI

[22] Ivanov V., The Code “Micro Channel Plate Simulator”. User's Guide, Muons, Inc., 2009 URL: http://www.muonsinc.com

[23] Choi Y. S., Kim J. M., “Monte Carlo Simulations for Tilted-Channel Electron Multipliers”, IEEE Trans. Electron Devices, 47:6, June (2000), 1293–1296 | DOI

[24] Shikhalev P. M, Ducote J. L., Xu T., Molloi S., “Quantum efficiency of the MCP Detector: Monte Carlo Calculations”, IEEE Trans Nucl. Sci., 52:5, October (2005), 1257–1262 | DOI

[25] Tutikov A. M.,Flegontov Yu. A., Evdokimov V. N., Shimanskaya A. V., “Optimization of channel multiplier in terms of noise factor”, Sov. J. Opt. Technol., 58:7, July (1991), 392–395

[26] Chung M. S., Everhart T. E., “Simple calculation of energy distribution of low-energy secondary electrons emitted from metals under electron bombardment”, J. of Applied Physics, 45:2, February (1974), 707–709 | DOI

[27] Bronshtein I. M., Evdokimov A. V., Stozharov V. M., Tyutikov A. M., “Raspredelenie po uglam vyleta i energii elektronov, rasseyannykh poluprovodnikovymi steklami”, Radiotekhnika i elektronika, 23:6 (1978), 1315–1317

[28] Chuiko G., Yakobson A. M., “Osnovnye kharakteristiki obogaschennogo svintsom stekla, kak materiala dlya vtorichno-elektronnykh umnozhitelei s nepreryvnym dinodom”, Radiotekhnika i elektronika, 11:9 (1966), 1682–1685

[29] Ito M., Kume H., Oba K., “Computer analysis of the timing properties in micro channel plate photomultiplier tubes”, IEEE Transactions on Nuclear Sciences, NS-31:1, February (1984), 408–410 | DOI

[30] Lye R. G., Dekker A. J., “Theory of Secondary Emission”, Phys. Review, 107:4, August (1957), 977–851 | DOI

[31] Agarwal B. K., “Variation of Secondary Emission with Primary Electron Energy”, Proc. of Physical Society, 71:5 (1958), 851–852 | DOI

[32] Rodney J., Vaughan M., “A New Formula for Secondary Emission Yield”, IEEE Transactions on Electric Devices, 36:9, September (1989), 1963–1967 | DOI

[33] Ivanov V., Insepov Z., Antipov S., “Gain and Time Resolution Simulations in Saturated MCP Pores”, Numerical Instruments and Methods A, 52549, 2010, 02291-6

[34] Liu P.-l., Williams K. J., Frankel M. Y., Esman R. D., “Saturation Characteristics of Fast Photodetectors”, IEEE Transactions on Microvawe Theory and Technuqie, 47:7, July (1999), 1297–1303 | DOI

[35] Landen O. L., Bell P. M., Oertel J. A. e. a., “Gain uniformity, linearity, saturation and depletion in gated microchannel-plate x-ray framing cameras”, Proc. SPIE, 2002, October (1993), 2–13 | DOI

[36] Jani P., Vámos L., Nemes T., “Timing resolution (FWHM) of some photon counting detectors and electronic circuitry”, Measurement Science Technology, 18 (2007), 155–160 | DOI

[37] Bashkeev A. A., Dudnikov V. G., “Characteristics of Microchannel Plates with Straight Channels in Saturation”, Pharmaceutical Chemistry Journal, 32:4 (1990), 818–822

[38] Giudicitti L., “Analytical, steady-state model of gain saturation in channel electron multiplier”, Nuclear Instruments and Methods A, 480 (2002), 670–679 | DOI

[39] Price G. J., Fraser G. W., “Calculation of the output charge cloud from a microchannel plate”, Nuclear Instruments and Methods A, 474 (2001), 188–196 | DOI

[40] Fraser G. W., Pearson J. P., Smith G. C. e. a., “The gain characteristics of microchannel plates for x-ray photon counting”, IEEE Transactions on Nuclear Science, NS-30:2, February (1963), 455–460

[41] Shikhalev P. M., “Saturation model for secondary electron multiplier detectors”, Nuclear Instruments and Methods A, 420 (1999), 202–212 | DOI

[42] Berkin A. B., Vasilev V. V., “Novyi podkhod k modelirovaniyu usileniya toka v kanale mikrokanalnoi plastiny”, Pisma v Zhurn. tekhn. fiziki, 32:15 (2007), 75–79

[43] Berkin A. B., Vasilev V. V., “Matematicheskoe modelirovanie rezhima usileniya impulsnogo toka v kanale mikrokanalnoi plastiny”, Pisma v Zhurn. tekhn. fiziki, 78:2 (2008), 127–129 | MR

[44] Berkin A. B., Vasilev V. V., “Matematicheskaya model rezhima usileniya postoyannogo toka v kanale mikrokanalnoi plastiny”, Pisma v Zhurn. tekhn. fiziki, 78:2 (2008), 130–133

[45] Ivanov V., Kulikov Yu., “Computer Models for Electron Optical Systems with Microchannel Plates”, IX Seminar on Theoretical and Applied Electron and Ion Optics (27–29 May, 2009. Moscow), 2009, 12–15

[46] Ivanov V., “Computational models for MCP Simulations”, Proc. of X Intern. Comput. Accelerator Physics Conf. ICAP'09 (Aug.30–Sept. 4, 2009. San Francisco), 2009, 1136–1139

[47] Gatti E., Oba K., Rehak P., “Study of the Electric Field Inside Microchannel Plate Multiplier”, IEEE Transactions on Nuclear Science, NS-30:1, February (1983), 461–468 | DOI

[48] Ivanov V., “Numerical Models in Simulation of Large-area Fast Photo Detectors”, XVI Intern. Workshop: Beam Dynamics and Optimization (June 28–30, 2010. St. Petersburg, Russia), 2010, 167–170

[49] Reimer L., Stelter D., “FORTRAN 77 Monte-Carlo program for minicomputers using Mott cross-section”, Scanning, 8 (1986), 265–277 | DOI

[50] Ishimura S., Aramata M., Shimizu R., “Monte-Carlo calculation approach to quantitative Auger electron spectroscopy”, J. of Applied Physics, 51 (1980), 2853–2860 | DOI

[51] Joy D. C., Monte Carlo modeling for electron microscopy and microanalysis, University Press, Oxford, 1995, 368 pp.

[52] Lin Y., Joy D. C., “A new examination of secondary electron yield data”, Surface Interface Analysis, 37 (2005), 895–900 | DOI

[53] Joy D. C., “A model for calculating secondary and backscattering electron yields”, J. of Microscopy, 147 (1987), 51–64 | DOI

[54] Joy D. C., Private communication, 2009

[55] Kanaya K., Ono S., Ishigaki F., “Secondary electron emission from insulators”, J. of Physics, D11 (1978), 2425–2437

[56] Seiler H., “Secondary electron emission in the scanning electron microscope”, J. of Applied Physics, 54 (1983), R1–R18 | DOI

[57] Young J. R., “Penetration of electrons in Al$_2$O$_3$-films”, Phys. Review, 103 (1956), 292–293 | DOI

[58] Lane R. O., Zaffarano D. I., “Transmission of 0–40 keV electrons by thin films with application to beta-ray spectroscopy”, Phys. Review, 94 (1954), 960–964 | DOI

[59] Ohya K., Mori I., “Influence of backscattered particles on angular dependence of secondary electron emission from Copper”, J. of Phys. Soc. Japan, 59 (1990), 1506–1517 | DOI

[60] Dawson P. H., “Secondary electron emission yield with primary electron energy”, Proc. of Physical Society, 71 (1958), 851–852 | DOI

[61] Insepov Z., Ivanov V., “Comparison of Candidate Secondary Electron Emission Materials”, 7th Intern. Workshop on Ring Imaging Cherenkov Detectors (May 3–7, 2010. Cassis, Provence, France), Numerical Instruments and Methods B, 268, 2010, 3315–3320 | DOI

[62] Insepov Z., Ivanov V., Jokela S. J. e. a., “Comparison of Secondary Electron Emission Simulation to Experiment”, Numerical Instruments and Methods A, 52549, 2010, 1793–1798

[63] Marshak A. H., Van Vliet C. M., “Electrical current and carrier density in degenerate materials with nonuniform band structure”, Proc. of IEEE, 72 (1984), 148–164 | DOI

[64] Chynoweth A. G., “Uniform Silicon p–n junctions. II. Ionization rates for electrons”, J. of Appl. Physics, 31 (1960), 1161–1165 | DOI

[65] Van Overstraeten R., De Man H., “Measurement of the lonization Rates in diffused. Silicon p–n Junctions”, Solid State Electronics, 13 (1970), 583–608 | DOI

[66] Biberman L. M., Yakubov I. T., Vorob'ev V. S., “Kinetics of collisional-radiation recombination and ionization in low-temperature plasma”, Proc. IEEE, 59 (1972), 555–572 | DOI

[67] Insepov Z., Terasawa M., Takayama K., “Surface erosion and modification by highly charged ions”, Phys. Review, A77 (2008), 062901

[68] Ruske F., Roczen M., Lee K. e. a., “Improved electrical transport in Al-doped zinc oxide by thermal treatment”, J. of Appl. Physics, 107 (2010), 013708 | DOI

[69] Insepov Z., Ivanov V., Elam J. e. a., Charge relaxation and gain depletion for candidate secondary electron emission materials, Nuclear Science Simposium. Oct. 30–Nov. 6, Knoxville, Tennessee, 2010

[70] Ivanov V., Insepov Z., MCP Simulations: State of the Art, Pico-Second Workshop VII. The Development of Large-Area Pico-second Photo-Devices. February 26–28, 2009. Argonne National Lab., 2009

[71] Ivanov V., Simulations of Conventional and Unconventional Photo-cathode Geometries, 1st Workshop on Photo-cathodes: 300–500 nm. 20–21 July, 2009. Chicago, 2009

[72] Ivanov V., Roberts T. J., Abrams R., Frisch H., “Large Area Photo-detectors with millimeter and picosecond Resolution: Simulations”, Proc. PAC'09 (4–8 May. Vancouver, Canada), 2009, 1240–1242

[73] Ivanov V., Abrams R., Roberts T. J. e. a., Review: The Developments of Large Area Fast Photo-Detectors, IX Seminar on Theoretical and Applied Electron and Ion Optics, 27–29 May. Moscow, 2009

[74] Insepov Z., Ivanov V., Jokela S., Wetstein M., Comparison of back-scattering properties of electron emission materials, PAC'11. March 28–April 1, 2011. New York, USA, 2011

[75] Wetstein M., Adams B., Chollett M., Ivanov V. e. a., Integration-Level Testing of Sub-Nanosecond Microchannel Plate Detector for Use in Time-of-Flight HEP Aplications, 2nd Intern. Conf. on Technology and Instrumentation in Particle Physics. 9–14 June 2011. Chicago, IL, USA, 2011