The compressive sensing approach for the FPGA-based image hardware encoder
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2011), pp. 85-99
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The image compression standard approaches are considered. The complexity estimation for the FPGA implementation are presented. The new approach is based on Compressive Sensing (CS) principles to reduce the image data dimension are suggested. The CS encoder model using the pseudorandom measurement algorithm is implemented. The convex algorithm with the minimum reconstruction error criterion to reconstruct the original signal from its sparse representation is matched. The FPGA-based hardware CS encoder is developed. The utilized logic for the 2-D–DCT and CS coders are compared. The experimental data is presented. The general advantages and shortcomings of the hardware design implementation for CS encoder is discussed.
Keywords: compressive sensing, compressive sampling, randomized measurements, $l_1$-optimization, FPGA
Mots-clés : DCT.
@article{VSPUI_2011_3_a9,
     author = {O. P. Isaev},
     title = {The compressive sensing approach for the {FPGA-based} image hardware encoder},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {85--99},
     year = {2011},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a9/}
}
TY  - JOUR
AU  - O. P. Isaev
TI  - The compressive sensing approach for the FPGA-based image hardware encoder
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 85
EP  - 99
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a9/
LA  - ru
ID  - VSPUI_2011_3_a9
ER  - 
%0 Journal Article
%A O. P. Isaev
%T The compressive sensing approach for the FPGA-based image hardware encoder
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 85-99
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a9/
%G ru
%F VSPUI_2011_3_a9
O. P. Isaev. The compressive sensing approach for the FPGA-based image hardware encoder. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2011), pp. 85-99. http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a9/

[1] Donoho D., “Compressed sensing”, IEEE Trans. Inform. Theory, 52:4 (2006), 1289–1306 | DOI | MR

[2] Selomon D., Szhatie dannykh, izobrazhenii i zvuka, ucheb. posobie dlya studentov vuzov, obuchayuschikhsya po napravleniyu «Prikladnaya matematika» / per. s angl. V. V. Chepyzhova, Tekhnosfera, M., 2004, 365 pp. (Mir programmirovaniya. Tsifrovaya obrabotka signalov)

[3] Joebert J., Audio Compression Using Modified Discrete Cosine Transform: the mp3 Coding Standard, An undergraduate research paper submitted to the Department of Mathematics College of Science The University of the Philippines Diliman. Quezon City, Oct. 2001, 73 pp.

[4] Van Dyck W., Smodic R., Hufnagl H., Berndorfer T., “High-speed JPEG coder implementation for a smart camera”, J. Real-Time Image Proc., 1:1 (2006), 63–68 | DOI

[5] Takhar D., Laska N., Michael W. et al., A new compressive imaging camera architectur using optical-domain compression, Proc. of Computational Imaging IV at SPIE Electronic Imaging. San Jose, CA, Jan. 2006. [Online] Available: http://dsp.rice.edu/files/cs/cscam-SPIEJan06.pdf

[6] Wakin B., Jason L., Marco D. et al., An architecture for compressive imaging, Proc. Intern. Conference on Image Processing – ICIP, 2006. Atlanta, GA, Oct. 2006. [Online] Available: http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/CSCam-ICIP06.pdf

[7] Granichin O. N., Pavlenko D. V., “Pandomizatsiya dannykh i $\ell_1$-optimizatsiya”, Kompyuternye instrumenty v obrazovanii, 2010, no. 1, 5–13

[8] Granichin O. N., Pavlenko D. V., “Randomizatsiya polucheniya dannykh i $\ell_1$-optimizatsiya (opoznanie so szhatiem)”, Obzor, Avtomatika i telemekhanika, 2010, no. 11, 3–28 | MR | Zbl

[9] Candès E., Romberg J., $\ell_1$-magic: Recovery of Sparse Signals via Convex Programming, Caltech. Oct. 2005. [Online] Available: http://www.acm.caltech.edu/l1magic/downloads/l1magic.pdf