Mathematic modeling of nonlinear deformation elastomeric layer
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2011), pp. 56-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear theory of an elastomeric layer for Saint-Venant–Kirchhoff material is constructed. Creation of such theory essentially simplifies the solution of nonlinear boundary problems of a layer and multilayered structures in comparison with those of the equations of the three-dimensional nonlinear theory of elasticity. It is necessary to solve only one equation of the second order for one required function under the theory of a layer. Numerous calculations for a layer of the ring form on the equations of the nonlinear theory of a layer and on the equations of the nonlinear theory of elasticity have been executed. These calculations enabled to establish a number of important laws. The rigidity characteristic of a layer at compression is essentially nonlinear already at enough small compression of 3% order. Limits of applicability of the material model considered depending on a degree of compression of a layer are established. These limits are approximately equal 5–10%. The equations of the layer theory are applicable at relative thickness $h/R0.2$. The equations of the linear theory of a layer can be used only at relative compression of order 0.005 and less.
Keywords: nonlinear problems elasticity, nonlinear theory of elastomeric layer, material Saint-Venant–Kirchhoff, semi-linear material.
@article{VSPUI_2011_3_a6,
     author = {V. M. Mal{\textquoteright}kov and S. A. Kabrits and S. E. Mansurova},
     title = {Mathematic modeling of nonlinear deformation elastomeric layer},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {56--63},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a6/}
}
TY  - JOUR
AU  - V. M. Mal’kov
AU  - S. A. Kabrits
AU  - S. E. Mansurova
TI  - Mathematic modeling of nonlinear deformation elastomeric layer
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 56
EP  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a6/
LA  - ru
ID  - VSPUI_2011_3_a6
ER  - 
%0 Journal Article
%A V. M. Mal’kov
%A S. A. Kabrits
%A S. E. Mansurova
%T Mathematic modeling of nonlinear deformation elastomeric layer
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 56-63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a6/
%G ru
%F VSPUI_2011_3_a6
V. M. Mal’kov; S. A. Kabrits; S. E. Mansurova. Mathematic modeling of nonlinear deformation elastomeric layer. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2011), pp. 56-63. http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a6/