A calculation of some unruin kharacteristics of an insurance company by Lundberg’s model
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2011), pp. 39-46
Voir la notice de l'article provenant de la source Math-Net.Ru
The following three problems are considered in the article: 1) calculation of the sequence $P_n(u)$ an unruin probability at the step $n$ and $u$ an initial capital; 2) calculation $P_t(u)$ an unruin probability before a moment $t$ and $u$ an initial capital; 3) calculation an unruin probability $P(u)$ as a solution of a difference equation, when the distribution functions are given as gistogramms. Some numerical examples are given.
Keywords:
unruin probability, Lundberg’s model, unruin probability before a moment $t$, difference equation.
@article{VSPUI_2011_3_a4,
author = {V. N. Igolkin},
title = {A calculation of some unruin kharacteristics of an insurance company by {Lundberg{\textquoteright}s} model},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {39--46},
publisher = {mathdoc},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a4/}
}
TY - JOUR AU - V. N. Igolkin TI - A calculation of some unruin kharacteristics of an insurance company by Lundberg’s model JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2011 SP - 39 EP - 46 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a4/ LA - ru ID - VSPUI_2011_3_a4 ER -
%0 Journal Article %A V. N. Igolkin %T A calculation of some unruin kharacteristics of an insurance company by Lundberg’s model %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2011 %P 39-46 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a4/ %G ru %F VSPUI_2011_3_a4
V. N. Igolkin. A calculation of some unruin kharacteristics of an insurance company by Lundberg’s model. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2011), pp. 39-46. http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a4/