Two firm competition at logistic market
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2011), pp. 22-28
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The model of two firms competition at logistic market is suggested. Two firms transporting goods for the customers are considered. Each firm define their own pricing scheme. Customers choose firm trying to minimize net value of service casualties. The game-theoretic approach used to find optimal behavior of customers considered as players. The existence of equilibrium is proved. The point of Nash equilibrium is found.
Keywords: logistic market, Nash equilibrium, optimal strategies, cost of firm’s customer order fulfillment.
@article{VSPUI_2011_3_a2,
     author = {V. M. Boure and A. A. Sergeeva},
     title = {Two firm competition at logistic market},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {22--28},
     year = {2011},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a2/}
}
TY  - JOUR
AU  - V. M. Boure
AU  - A. A. Sergeeva
TI  - Two firm competition at logistic market
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 22
EP  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a2/
LA  - ru
ID  - VSPUI_2011_3_a2
ER  - 
%0 Journal Article
%A V. M. Boure
%A A. A. Sergeeva
%T Two firm competition at logistic market
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 22-28
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a2/
%G ru
%F VSPUI_2011_3_a2
V. M. Boure; A. A. Sergeeva. Two firm competition at logistic market. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 3 (2011), pp. 22-28. http://geodesic.mathdoc.fr/item/VSPUI_2011_3_a2/

[1] Ghiani G., Laporte G., Musmanno R., Introduction to Logistics Systems Planning and Control, John Wiley and Sons, London, 2004, 360 pp.

[2] Daganzo C., Logistics system analysis, Springer, Berlin, 1996, 272 pp. | Zbl

[3] Langevin A., Riopel D., Logistics systems: design and optimization, Springer, New York, 2005, 392 pp. | MR

[4] Bure V. M., “Teoretiko-igrovaya model odnoi sistemy massovogo obsluzhivaniya”, Vestn. S.-Peterb. un-ta. Ser. 1: Matematika, mekhanika, astronomiya, 2:9 (2002), 3–5

[5] Petrosyan L. A., Zenkevich N. A., Semina E. A., Teoriya igr, ucheb. posobie dlya un-tov, Vysshaya shkola; Knizhnyi dom «Universitet», M., 1998, 304 pp.

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v 2 t., per. s angl. Yu. V. Prokhorova; predisl. A. N. Kolmogorova, v. 2, Mir, M., 1984, 751 pp.