@article{VSPUI_2011_2_a9,
author = {Nguyen Dinh Huyen},
title = {Conditions of convergence of some classes of nonlinear difference systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {90--96},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a9/}
}
TY - JOUR AU - Nguyen Dinh Huyen TI - Conditions of convergence of some classes of nonlinear difference systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2011 SP - 90 EP - 96 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a9/ LA - ru ID - VSPUI_2011_2_a9 ER -
%0 Journal Article %A Nguyen Dinh Huyen %T Conditions of convergence of some classes of nonlinear difference systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2011 %P 90-96 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a9/ %G ru %F VSPUI_2011_2_a9
Nguyen Dinh Huyen. Conditions of convergence of some classes of nonlinear difference systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2011), pp. 90-96. http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a9/
[1] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, per. s rum. M. I. Bukatarya, G. V. Nozhaka, ed. V. P. Rubanik, Mir, M., 1971, 312 pp. | MR
[2] Aleksandrov A. Yu., Zhabko A. P., Ustoichivost raznostnykh sistem, Nauch.-issled. in-t khimii S.-Peterb. un-ta, SPb., 2003, 112 pp. | MR | Zbl
[3] Aleksandrov A. Yu., Platonov A. V., Starkov V. N., Stepenko N. A., Matematicheskoe modelirovanie i issledovanie ustoichivosti biologicheskikh soobschestv, SOLO, SPb., 2006, 186 pp.
[4] Svizherev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978, 352 pp. | MR
[5] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR
[6] Zubov V. I., Kolebaniya v nelineinykh i upravlyaemykh sistemakh, Sudostroenie, L., 1962, 632 pp. | MR
[7] Aleksandrov A. Yu., “Nekotorye usloviya ustoichivosti i konvergentnosti nelineinykh sistem”, Differents. uravneniya, 36:4 (2000), 549–551 | MR | Zbl
[8] Aleksandrov A. Yu., “Dostatochnye usloviya konvergentnosti odnoi nelineinoi sistemy”, Protsessy upravleniya i ustoichivost, Trudy nauch. konferentsii, OOP Nauch.-issled. in-t khimii S.-Peterb. un-ta, SPb., 2000, 37–39
[9] Ataeva N. N., “Svoistvo konvergentsii dlya raznostnykh sistem”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2004, no. 4, 91–98
[10] Aleksandrov A. Yu., Zhabko A. P., “O suschestvovanii predelnykh rezhimov nelineinykh raznostnykh sistem”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2009, no. 3, 240–251
[11] Pykh Yu. A., Ravnovesiya i ustoichivost v modelyakh populyatsionnoi dinamiki, Nauka, M., 1983, 182 pp. | MR
[12] Yoshiaki Muroya, “Persistence and global stability in discrete models of Lotka–Volterra type”, J. of Math. Analysis and Applications, 330:1 (2007), 24–33 | DOI | MR | Zbl