Modeling of water adsorption process on crystal surfaces
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2011), pp. 67-75
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of crystal surface layer modeling with clusters consisting of a finite number of atoms was developed with use Gaussian-03 program package. Interaction between a molecule of water and MgO crystal and ZnO crystal surface was analysed. Density functional theory B3LYP method was used to perform calculations in the 6-31G basis for various cluster models. It was revealed that hydrogen bonding between hydrogen atom of the water molecule and oxygen atom of the crystal (surface) is the most energy-optimal for MgO crystal. There was no such effect observed regarding ZnO crystal, which confirms its hydrophobic character. The values of internuclear distances, atomic charges, adsorption energies and vibrational frequencies for the examined systems have been calculated and are listed in the paper. The calculations were performed in concurrent mode on the high-performance computer system of Saint-Petersburg State University Faculty of Applied Mathematics and Control Processes.
Keywords: quantum chemistry, B3LYP, parallel computing, crystal surface
Mots-clés : adsorption.
@article{VSPUI_2011_2_a6,
     author = {A. V. Raik and M. E. Bedrina},
     title = {Modeling of water adsorption process on crystal surfaces},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {67--75},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a6/}
}
TY  - JOUR
AU  - A. V. Raik
AU  - M. E. Bedrina
TI  - Modeling of water adsorption process on crystal surfaces
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 67
EP  - 75
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a6/
LA  - ru
ID  - VSPUI_2011_2_a6
ER  - 
%0 Journal Article
%A A. V. Raik
%A M. E. Bedrina
%T Modeling of water adsorption process on crystal surfaces
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 67-75
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a6/
%G ru
%F VSPUI_2011_2_a6
A. V. Raik; M. E. Bedrina. Modeling of water adsorption process on crystal surfaces. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2011), pp. 67-75. http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a6/

[1] Abarenkov I. V., Tretyak V. M., Tulub A. V., “O mekhanizme dissotsiatsii molekul vody na (100) poverkhnosti kristalla MgO v modeli parnykh neempiricheskikh potentsialov”, Khimicheskaya fizika, 4:4 (1985), 974–980

[2] Bandura A. V., Sykes D. G., “Adsorption of Water on the TiO$_2$ (Rutile) (110) Surface: A Comparison of Periodic and Embedded Cluster Calculations”, J. Phys. Chem. B, 108 (2004), 7844–7853 | DOI

[3] Evarestov R. A., Bandura A. V., “Kompyuternoe modelirovanie adsorbtsii vody na poverkhnosti kristallicheskikh oksidov titana, olova, tsirkoniya i gafniya”, Ros. khim. zhurnal, 5 (2007), 149–158 | Zbl

[4] Fox H., Gillan M. J., Horsfield A. P., “Methods for calculating the desorption rate of an isolated molecule from a surface: Water on MgO(001)”, Surface Science, 601 (2007), 5016–5025 | DOI

[5] Bellert D., Burns K. L., Wampler R., et al., “An accurate determination of the ionization energy of the MgO molecule”, Chem. Phys. Lett., 322 (2000), 41–44 | DOI

[6] Puente de la E., Aguado A., Ayucla A., et al., “Structural and electronic properties of small neutral (MgO)$_n$ clusters”, Phys. Rev. B, 56 (1997), 7607–7614 | DOI

[7] Malliavin M. J., Coudray C., “Ab initio calculations on (MgO)$_n$, (CaO)$_n$, and (NaCl)$_n$ clusters ($n$ = 1–6)”, J. Chem. Phys., 106 (1997), 2323–2329 | DOI

[8] Koch W., Holthausen M. C., A Chemist’s Guide to Density Functional Theory, 2, Wiley-VCH, Weinheim, 2002, 293 pp.

[9] Becke A. D., “Density-functional thermochemistry. III. The role of exact exchange”, J. Chem. Phys., 98 (1993), 5648–5652 | DOI

[10] Lee C., Yang W., Parr R. G., “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37 (1988), 785–789 | DOI

[11] Frisch M. J., Trucks G. W., Schlegel H. B., et al., GAUSSIAN-03, Rev. B.05, Gaussian, Pittsburgh PA, 2003, 596 pp.

[12] Raik A. V., Bedrina M. E., “Kompyuternoe modelirovanie protsessa adsorbtsii vody na poverkhnosti kristalla MgO”, Protsessy upravleniya i ustoichivost, Trudy 40-i mezhdunarodnoi konferentsii aspirantov i studentov, eds. N. V. Smirnov, G. Sh. Tamasyan, Izd. Dom S.-Peterb. gos. un-ta, SPb., 2009, 247–252 | MR

[13] Kaplan I. G., Vvedenie v teoriyu mezhmolekulyarnykh vzaimodeistvii, Nauka, M., 1982, 312 pp.

[14] Henrich V. E., Cox P. A., The Surface Science of Metal Oxides, Cambridge University Press, Cambridge, England, 1994, 461 pp.

[15] Benedict W. S., Gailar N., Plyler E. K., “Rotation-Vibration Spectra of Deuterated Water Vapor”, J. Chem. Phys., 24 (1956), 1139–1165 | DOI

[16] Wu M.-C., Goodman D. W., “Acid/base properties of MgO studied by high resolution electron energy loss spectroscopy”, Cat. Lett., 15 (1992), 1–11 | DOI

[17] Wang Y., Nguyen H. N., Truong T. N., “Mechanisms of and Effect of Coadsorption on Water Dissociation on an Oxygen Vacancy of the MgO(100) Surface”, Chem. Eur. J., 12 (2006), 5859–5867 | DOI