Mean-square synthesis of digital systems via the methods of $H$-theory
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2011), pp. 17-28
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problems of mean-square synthesis are considered on the base of the modern approach to digital LTI systems optimization in the sense of banach spaces norms. It is shown that the optimal mean-square synthesis can be treated as an optimisation problem in $H_2$-space and that $H_{\infty}$ problem is a quite suitable representation of the guaranteeing mean-square synthesis. New spectral methods are proposed to solve these problems without resort to the Riccati equations that provides a convenience for certain spectral features of an optimal controller investigation and essentially simplifies an optimal transfer function design. The ultimate position has distinct significance for the embedded controller adaptive turning for real-time implementation.
Keywords: optimal synthesis, feedbac control, mean-square functional, linear plants.
Mots-clés : stabilisation
@article{VSPUI_2011_2_a2,
     author = {E. I. Veremey},
     title = {Mean-square synthesis of digital systems via the methods of $H$-theory},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {17--28},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a2/}
}
TY  - JOUR
AU  - E. I. Veremey
TI  - Mean-square synthesis of digital systems via the methods of $H$-theory
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 17
EP  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a2/
LA  - ru
ID  - VSPUI_2011_2_a2
ER  - 
%0 Journal Article
%A E. I. Veremey
%T Mean-square synthesis of digital systems via the methods of $H$-theory
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 17-28
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a2/
%G ru
%F VSPUI_2011_2_a2
E. I. Veremey. Mean-square synthesis of digital systems via the methods of $H$-theory. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2011), pp. 17-28. http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a2/

[1] Veremei E. I., “Chastotnyi metod sinteza optimalnykh regulyatorov dlya lineinykh sistem so skalyarnym vozmuscheniem”, Chast 1, Izv. vuzov SSSR. Elektromekhanika, 1985, no. 10, 52–57

[2] Veremei E. I., “Chastotnyi metod sinteza optimalnykh regulyatorov dlya lineinykh sistem so skalyarnym vozmuscheniem”, Chast 2, Izv. vuzov SSSR. Elektromekhanika, 1985, no. 12, 33–39

[3] Bokova Ya. M., Veremei E. I., “Vychislitelnye aspekty spektralnogo metoda $H_\infty$-optimalnogo sinteza”, Izv. RAN. Teoriya i sistemy upravleniya, 1995, no. 4, 88–96

[4] Veremei E. I., “Spektralnyi podkhod k optimizatsii sistem upravleniya po normam prostranstv $H_2$ i $H_\infty$”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2004, no. 1, 48–59 | MR

[5] Veremei E. I., Petrov Yu. P., “Metod sinteza optimalnykh regulyatorov, dopuskayuschii tekhnicheskuyu realizatsiyu”, Matematicheskie metody issledovaniya upravlyaemykh mekhanicheskikh sistem, Izd-vo Leningr. un-ta, L., 1982, 24–31

[6] Francis B. A., A course in $H_\infty$ control theory, Lecture Notes in Control and Information Sciences, 88, Springer-Verlag, Berlin, 1987, 156 pp. | DOI | MR | Zbl

[7] Doyle J., Francis B., Tannenbaum A., Feedback control theory, v. XI, Macmillan Publ. Co., New York, 1992, 227 pp. | MR

[8] Barabanov A. E., Pervozvanskii A. A., “Optimizatsiya po ravnomerno-chastotnym pokazatelyam ($H$-teoriya)”, Avtomatika i telemekhanika, 1992, no. 9, 3–32

[9] Polyak B. T., Scherbakov P. S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002, 303 pp.

[10] Mackenroth U., Robust control systems, Springer-Verlag, Berlin, 2004, 519 pp. | MR | Zbl

[11] Basar T., Bernhard P., $H$-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, Birkhauser, Boston, 2008, 412 pp. | Zbl

[12] Volgin L. N., Optimalnoe diskretnoe upravlenie dinamicheskimi sistemami, Nauka, M., 1986, 240 pp.