Mots-clés : stabilisation
@article{VSPUI_2011_2_a2,
author = {E. I. Veremey},
title = {Mean-square synthesis of digital systems via the methods of $H$-theory},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {17--28},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a2/}
}
TY - JOUR AU - E. I. Veremey TI - Mean-square synthesis of digital systems via the methods of $H$-theory JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2011 SP - 17 EP - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a2/ LA - ru ID - VSPUI_2011_2_a2 ER -
%0 Journal Article %A E. I. Veremey %T Mean-square synthesis of digital systems via the methods of $H$-theory %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2011 %P 17-28 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a2/ %G ru %F VSPUI_2011_2_a2
E. I. Veremey. Mean-square synthesis of digital systems via the methods of $H$-theory. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2011), pp. 17-28. http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a2/
[1] Veremei E. I., “Chastotnyi metod sinteza optimalnykh regulyatorov dlya lineinykh sistem so skalyarnym vozmuscheniem”, Chast 1, Izv. vuzov SSSR. Elektromekhanika, 1985, no. 10, 52–57
[2] Veremei E. I., “Chastotnyi metod sinteza optimalnykh regulyatorov dlya lineinykh sistem so skalyarnym vozmuscheniem”, Chast 2, Izv. vuzov SSSR. Elektromekhanika, 1985, no. 12, 33–39
[3] Bokova Ya. M., Veremei E. I., “Vychislitelnye aspekty spektralnogo metoda $H_\infty$-optimalnogo sinteza”, Izv. RAN. Teoriya i sistemy upravleniya, 1995, no. 4, 88–96
[4] Veremei E. I., “Spektralnyi podkhod k optimizatsii sistem upravleniya po normam prostranstv $H_2$ i $H_\infty$”, Vestn. S.-Peterb. un-ta. Ser. 10: Prikladnaya matematika, informatika, protsessy upravleniya, 2004, no. 1, 48–59 | MR
[5] Veremei E. I., Petrov Yu. P., “Metod sinteza optimalnykh regulyatorov, dopuskayuschii tekhnicheskuyu realizatsiyu”, Matematicheskie metody issledovaniya upravlyaemykh mekhanicheskikh sistem, Izd-vo Leningr. un-ta, L., 1982, 24–31
[6] Francis B. A., A course in $H_\infty$ control theory, Lecture Notes in Control and Information Sciences, 88, Springer-Verlag, Berlin, 1987, 156 pp. | DOI | MR | Zbl
[7] Doyle J., Francis B., Tannenbaum A., Feedback control theory, v. XI, Macmillan Publ. Co., New York, 1992, 227 pp. | MR
[8] Barabanov A. E., Pervozvanskii A. A., “Optimizatsiya po ravnomerno-chastotnym pokazatelyam ($H$-teoriya)”, Avtomatika i telemekhanika, 1992, no. 9, 3–32
[9] Polyak B. T., Scherbakov P. S., Robastnaya ustoichivost i upravlenie, Nauka, M., 2002, 303 pp.
[10] Mackenroth U., Robust control systems, Springer-Verlag, Berlin, 2004, 519 pp. | MR | Zbl
[11] Basar T., Bernhard P., $H$-Infinity Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, Birkhauser, Boston, 2008, 412 pp. | Zbl
[12] Volgin L. N., Optimalnoe diskretnoe upravlenie dinamicheskimi sistemami, Nauka, M., 1986, 240 pp.