The solution of a nonlinear problem of waves on the surface weakly-viscous fluid
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2011), pp. 9-16
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonlinear problem about propagation of gravitational waves on a free surface weakly-viscous fluid is considered. It is offered to consider viscous dissipation not only in speed of wave motion of a fluid, but also in wave parameters – frequency and decrement of attenuation of a wave. Therefore wave parameters are set as functions a subject definition from time. Such representation has allowed to apply effectively to the decision of a nonlinear problem a method of successive approximations of Stokes. The solution is found with accuracy of the third approach. The received expressions for frequency and decrement of attenuation of a wave represent the sum of two composed. The first – a constant corresponding a linear problem. The second composed, considering nonlinear effects – function of time, eventually aspiring zero. The found expressions in neglect viscosity pass all in known for an perfect fluid.
Keywords: nonlinear surface waves, viscosity of a fluid, the dispersion relations.
@article{VSPUI_2011_2_a1,
     author = {V. A. Barinov and K. Yu. Basinsky},
     title = {The solution of a nonlinear problem of waves on the surface weakly-viscous fluid},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {9--16},
     year = {2011},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a1/}
}
TY  - JOUR
AU  - V. A. Barinov
AU  - K. Yu. Basinsky
TI  - The solution of a nonlinear problem of waves on the surface weakly-viscous fluid
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 9
EP  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a1/
LA  - ru
ID  - VSPUI_2011_2_a1
ER  - 
%0 Journal Article
%A V. A. Barinov
%A K. Yu. Basinsky
%T The solution of a nonlinear problem of waves on the surface weakly-viscous fluid
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 9-16
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a1/
%G ru
%F VSPUI_2011_2_a1
V. A. Barinov; K. Yu. Basinsky. The solution of a nonlinear problem of waves on the surface weakly-viscous fluid. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 2 (2011), pp. 9-16. http://geodesic.mathdoc.fr/item/VSPUI_2011_2_a1/

[1] Stokes G. G., “On the theory of oscillatory waves”, Math. and Physic. Papers, 1 (1880), 197–229

[2] Barinov V. A., “Rasprostranenie voln po svobodnoi poverkhnosti vyazkoi zhidkosti”, Vestn. S.-Peterb. un-ta. Ser.10: Prikladnaya matematika, informatika, protsessy upravleniya, 2010, no. 2, 18–31

[3] Barinov V. A., Basinskii K. Yu., “Vliyanie vyazkosti zhidkosti na rasprostranenie poverkhnostnykh voln”, Trudy 10-i Vseros. konferentsii «Prikladnye tekhnologii gidroakustiki i gidrofiziki», Nauka, SPb., 2010, 205–208

[4] Basinskii K. Yu., “Nelineinye volny na poverkhnosti slabovyazkoi zhidkosti”, Sb. trudov 3-i Region. konferentsii «Sovremennye problemy matematicheskogo i informatsionnogo modelirovaniya», Izd-vo Vektor Buk, Tyumen, 2010, 32–36

[5] Barinov V. A., Butakova N. N., “Nelineinaya zadacha o poverkhnostnykh volnakh na dvukhfaznoi smesi”, Zhurn. vychisl. matematiki i matem. fiziki, 43:12 (2003), 1870–1883 | MR | Zbl

[6] Joseph D. D., Wang J., “The dissipation approximation and viscous potential flow”, J. Fluid Mech, 505 (2004), 365–377 | DOI | MR | Zbl

[7] Sretenskii L. N., Teoriya volnovykh dvizhenii zhidkosti, Nauka, M., 1977, 816 pp.

[8] Aleshkov Yu. Z., Teoriya voln na poverkhnosti tyazheloi zhidkosti, Izd-vo Leningr. un-ta, L., 1981, 196 pp.