On stability and stabilization of mechanical systems with nonlinear energy sinks
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 106-115
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Direct energy pumping phenomenon, i. e. passive irreversible transfer of mechanical energy from a linear oscillator to a nonlinear one has been studied intensively during the past decade. On the base of this phenomenon, numerous seismic mitigation devices were developed. Therefore, the important problems are those of stability analysis and stabilizing control synthesis for complex mechanical systems composed from a linear part, a nonlinear energy sink and essentially nonlinear interconnections. In the present paper, by the use of the Lyapunov direct method, the sufficient conditions of asymptotic stability of equilibrium positions for such systems are obtained. The theorems proved make it possible to study stability of an equilibrium position on the basis of decomposition of the original complex mechanical system into several isolated subsystems. For systems with incomplete measurement of a generalized coordinates vector the problems of stabilization of an equilibrium position by means of nonlinear feedback using only measured coordinates and auxiliary variables are investigated. The results obtained are applied in the problem of stabilisation of a three-mass system with a single measurible coordinate.
Keywords: mechanical systems, stability, stabilization, the Lyapunov functions
Mots-clés : decomposition.
@article{VSPUI_2011_1_a9,
     author = {A. Yu. Aleksandrov and A. A. Kosov},
     title = {On stability and stabilization of mechanical systems with nonlinear energy sinks},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {106--115},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a9/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - A. A. Kosov
TI  - On stability and stabilization of mechanical systems with nonlinear energy sinks
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 106
EP  - 115
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a9/
LA  - ru
ID  - VSPUI_2011_1_a9
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A A. A. Kosov
%T On stability and stabilization of mechanical systems with nonlinear energy sinks
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 106-115
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a9/
%G ru
%F VSPUI_2011_1_a9
A. Yu. Aleksandrov; A. A. Kosov. On stability and stabilization of mechanical systems with nonlinear energy sinks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 106-115. http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a9/

[1] Lee Y. S., Vakakis A. F., Bergman L. A. et al., “Passive non-linear targeted energy transfer and its applications to vibration absorption”, a review, Proc. of the Institution of Mechanical Engineers. Pt K. J. of Multi-body Dynamics, 222:2 (2008), 77–134 | DOI

[2] Pham T. T., Lamarque C.-H., Savadkoohi A. T., IV European Conference on Computational Mechanics (Palais des Congres. Paris, France, May 16–21, 2010) URL: http://www.eccm2010.org/complet/fullpaper_1369.pdf

[3] Zubov V. I., Kolebaniya v nelineinykh i upravlyaemykh sistemakh, Sudostroenie, L., 1962, 632 pp.

[4] Merkin D. R., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1976, 320 pp.

[5] Zubov V. I., Analiticheskaya dinamika giroskopicheskikh sistem, Sudostroenie, L., 1970, 320 pp.

[6] Merkin D. R., Giroskopicheskie sistemy, Nauka, M., 1974, 344 pp.

[7] Pozharitskii G. K., “Ob asimptoticheskoi ustoichivosti ravnovesii i statsionarnykh dvizhenii mekhanicheskikh sistem s chastichnoi dissipatsiei”, Prikl. matematika i mekhanika, 25:4 (1961), 657–667 | Zbl

[8] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973, 272 pp.

[9] Zubov V. I., Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya, Sudostroenie, L., 1959, 324 pp.

[10] Skruch P., “Stabilization of second-order systems by non-linear feedback”, Intern. J. Appl. Math. Comput. Sci., 2004, no. 4, 455–460 | MR | Zbl

[11] Aleksandrov A. Yu., Kosov A. A., “O stabilizatsii mekhanicheskikh sistem s odnorodnymi potentsialnymi silami”, Kachestvennye svoistva, asimptotika i stabilizatsiya nelineinykh dinamicheskikh sistem, mezhvuz. sb. nauch. trudov, eds. otv. red. V. N. Schennikov, O. V. Druzhinina, Izd-vo Mordov. un-ta, Saransk, 2010, 59–73