On nondegenerate triangulation and its refinement near domain boundary
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 76-84
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some method of refinement triangulation near domain boundary with retaining property of nondegeneracy are considered. Detailed algorithm of refinement triangulation near smooth domain boundary is presented. The Theorem about possibility infinite refinement triangulation near domain boundary with retaining property of nondegeneracy is formulated. Basic ideas of proof at straight-line boundary case, curvilinear boundary case are produced.
Mots-clés : triangulation, refinement, domain.
Keywords: nondegeneracy, curvilinear boundary, straight-line boundary
@article{VSPUI_2011_1_a7,
     author = {E. P. Arsentyeva},
     title = {On nondegenerate triangulation and its refinement near domain boundary},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {76--84},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a7/}
}
TY  - JOUR
AU  - E. P. Arsentyeva
TI  - On nondegenerate triangulation and its refinement near domain boundary
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 76
EP  - 84
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a7/
LA  - ru
ID  - VSPUI_2011_1_a7
ER  - 
%0 Journal Article
%A E. P. Arsentyeva
%T On nondegenerate triangulation and its refinement near domain boundary
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 76-84
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a7/
%G ru
%F VSPUI_2011_1_a7
E. P. Arsentyeva. On nondegenerate triangulation and its refinement near domain boundary. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 76-84. http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a7/

[1] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, per. s angl. B. I. Kvasova, ed. N. N. Yanenko, Mir, M., 1980, 512 pp.

[2] Demyanovich Yu. K., “Simplitsialnye rasprostraneniya setochnykh funktsii”, Metody vychislenii, no. 8, ed. Z. I. Tsarkova, Izd-vo Leningr. un-ta, L., 1973, 32–50 | MR

[3] Ruppert J., “A Delaunay refinement algorithm for quality 2-dimentional mesh generation”, J. of Algorithms, 18:3 (1995), 548-–585 | DOI | MR | Zbl

[4] Dorfler W., Rumpf M., “An adaptive strategy for elliptic problems including aposteriori controlled boundary approximation algorithm”, Mathematics of computation, 67:224 (1998), 1361–1382 | DOI | MR

[5] Ischenko A. V., Kireev I. V., “Algoritm postroeniya dvumernykh vlozhennykh setok”, Zhurn. Sibirsk. federal. un-ta. Ser. Matematika i fizika, 2009, no. 2, 83–90

[6] Azarenok B. N., “O postroenii strukturirovannykh setok v dvumernykh nevypuklykh oblastyakh s pomoschyu otobrazhenii”, Zhurn. vychisl. matematiki i matem. fiziki, 49:5 (2009), 1–13 | MR