Mathematical modeling of ion microprobes with fringe fields effects
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 60-75
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fringe field influence on beam characteristics was investigated and estimated in microprobes. It is possible to obtain better beam characteristics with fringe field effects in comparison with the rectangular model. Some recommendation were given in order to improve microprobe parameters and show that linear model is not appropriate for constructing real microprobes because beam characteristics significantly suffer from nonlinear aberrations.
Keywords: mathematical and computer modeling, microprobes, symbolic calculations, fringe fields
Mots-clés : aberrations.
@article{VSPUI_2011_1_a6,
     author = {Yu. V. Tereshonkov and S. N. Andrianov and M. Jak\v{s}i\'c and \v{Z}. Pastuovi\'c and T. Tadi\'c},
     title = {Mathematical modeling of ion microprobes with fringe fields effects},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {60--75},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a6/}
}
TY  - JOUR
AU  - Yu. V. Tereshonkov
AU  - S. N. Andrianov
AU  - M. Jakšić
AU  - Ž. Pastuović
AU  - T. Tadić
TI  - Mathematical modeling of ion microprobes with fringe fields effects
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 60
EP  - 75
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a6/
LA  - ru
ID  - VSPUI_2011_1_a6
ER  - 
%0 Journal Article
%A Yu. V. Tereshonkov
%A S. N. Andrianov
%A M. Jakšić
%A Ž. Pastuović
%A T. Tadić
%T Mathematical modeling of ion microprobes with fringe fields effects
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 60-75
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a6/
%G ru
%F VSPUI_2011_1_a6
Yu. V. Tereshonkov; S. N. Andrianov; M. Jakšić; Ž. Pastuović; T. Tadić. Mathematical modeling of ion microprobes with fringe fields effects. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 60-75. http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a6/

[1] Tereshonkov Yu. V., Matematicheskoe modelirovanie zondoformiruyuschikh sistem s uchetom kraevykh polei, S.-Peterb. un-t, SPb., 2010, 194 pp.

[2] Andrianov S. N., Dinamicheskoe modelirovanie sistem upravleniya puchkami chastits, Izd-vo S.-Peterb. un-ta, SPb., 2004, 368 pp.

[3] Ovsyannikov D. A., Matematicheskie metody optimizatsii dinamiki puchkov, Izd-vo Leningr. un-ta, L., 1986, 91 pp.

[4] Dymnikov A. D., Garcia G., “High-frequency focusing system for nuclear microprobes”, NIM B, 158 (1999), 85–89 | DOI

[5] Jamieson D. N., “New generation nuclear microprobe systems”, NIM B, 181 (2001), 1–11 | DOI

[6] Watt F., Rajta I., Kan J. A. et al., “Proton beam micromachined resolution standards for nuclear microprobes”, NIM B, 190 (2002), 306–311 | DOI

[7] Dragt A. J., “Lectures on Nonlinear Orbit Dynamics”, Physics of High Energy Particle Accelerators, AIP Conf. Proc., 87, New York, 1982, 147–313 | DOI

[8] Martirosyan Yu. L., “Issledovanie effektov kraevykh magnitnykh polei v nakopitelnykh koltsakh”, Zhurn. tekhn. fiziki, 73:10 (2003), 113–115

[9] Berz M., Erdelyi B., Makino K., “Fringe field effects in small rings of large acceptance”, Phys. Rev. ST – Accelerators and Beams, 3 (2000), 124001, 11 pp. | DOI

[10] Enge H. A., “Effect of Extended Fringing Fields on Ion-Focusing Properties of Deflecting Magnets”, Review of Scientific Instruments, 35 (1963), 278–287 | DOI

[11] Moloney G. R., Jamieson D. N., Legge G. J. F., “Analysis of the fringe field region of magnetic quadrupole lenses: field measurements and ion optical calculations”, NIM B, 130 (1997), 97–103 | DOI

[12] Moloney G. R., Jamieson D. N., Legge G. J. F., “Design modifications to reduce duodecapole components in the fringe field region of magnetic quadrupole lenses”, NIM B, 77 (1993), 35–38 | DOI

[13] Venturini M., Abell D., Dragt A. J., “Map Computation from Magnetic Field Data and Application to the LHC High-Gradient Quadrupoles”, Proc. of the 5th Intern. Computational Accelerator Physics Conference, 1998, 184–188

[14] Smith D. L. Focusing properties of electric and magnetic quadrupole lenses, NIM, 79:1 (1970), 144–164

[15] Sagalovsky L., “Beam transport optics of dipole fringe field in the framework of third-order matrix theory”, NIM A, 298:1–3 (1990), 205–222 | DOI

[16] Antone T. A., AL-Maaitah A. A., “Analytical solutions to classes of linear oscillator equations with time varying frequencies”, J. of Math. Physics, 33:10 (1992), 3330–3339 | DOI | MR | Zbl

[17] Dragt A. J., Finn J. M., “Lie Series and Invariant Functions for Analytic Symplectic Maps”, J. of Math. Phys., 17 (1976), 2215–2227 | DOI | MR | Zbl

[18] Sait Laboratorii vzaimodeistviya chastits (Laboratory for Ion Beam Interactions) Instituta Rudzhera Boshkovicha, g. Zagreb, Khorvatiya URL: http://www.irb.hr/en/str/zef/z3labs/liis

[19] Dymnikov A. D., Yavor S. Ya., “Chetyre kvadrupolnye linzy kak analog aksialnosimmetrichnoi sistemy”, Zhurn. tekhn. fiziki, 33:7 (1963), 851–858

[20] Lebed S. A., “Dvukhrezhimnaya zondoformiruyuschaya sistema dlya sovremennogo yadernogo nanozonda”, Zhurn. teor. fiziki, 72:1 (2002), 92–95