Variable transition energy lattices based on different periodic cells with various types of dispersion suppressor
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 37-48
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structures with the variable transition energy have many applications. In particular this function plays the crucial role in the high intensity synchrotrons to avoid a gamma-transition crossing, in the storage rings to provide the optimal condition for the stochastic cooling, in the multi-particle synchrotrons to create the simultaneous conditions for each type of particles. From this point of view the flexible control of gamma-transition by little number of elements is desirable. Besides we should keep such important properties as dispersion-free straight sections, the minimum number of chromatic sextupoles and their unchangeable self-compensation scheme independently on gamma-transition value to survive a large dynamic aperture in whole energy region. In this paper we consider the “resonant” lattice based on the doublet, the triplet and compare their advantages and disadvantages with the singlet cell lattice. Another subject solved in this paper is the dispersion suppressor. Bibliogr. 14 items.
Keywords: lattice, compensation of chromaticity
Mots-clés : synchrotron, dispersion suppressor.
@article{VSPUI_2011_1_a4,
     author = {Yu. V. Senichev and A. N. Chechenin and S. A. Kostromin},
     title = {Variable transition energy lattices based on different periodic cells with various types of dispersion suppressor},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {37--48},
     year = {2011},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a4/}
}
TY  - JOUR
AU  - Yu. V. Senichev
AU  - A. N. Chechenin
AU  - S. A. Kostromin
TI  - Variable transition energy lattices based on different periodic cells with various types of dispersion suppressor
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 37
EP  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a4/
LA  - en
ID  - VSPUI_2011_1_a4
ER  - 
%0 Journal Article
%A Yu. V. Senichev
%A A. N. Chechenin
%A S. A. Kostromin
%T Variable transition energy lattices based on different periodic cells with various types of dispersion suppressor
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 37-48
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a4/
%G en
%F VSPUI_2011_1_a4
Yu. V. Senichev; A. N. Chechenin; S. A. Kostromin. Variable transition energy lattices based on different periodic cells with various types of dispersion suppressor. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 37-48. http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a4/

[1] Senichev Yu., Chechenin A., “Construction of “Resonant” Magneto-Optical Lattices with Controlled Momentum Compaction Factor”, J. of Exper. and Theor. Physics, 105:6 (2007), 1141–1156 | DOI

[2] Senichev Yu., Chechenin A., “Theory of “Resonant” Lattices for Synchrotrons with Negative Momentum Compaction Factor”, J. of Exper. and Theor. Physics, 105:5 (2007), 1127–1137

[3] Golubeva N., Iliev A., Senichev Yu., “The new lattices for the booster of Moscow Kaon Factory”, Proc. of Intern. Seminar on Intermediate Energy Physics, v. 2, Moscow, 1989, 290 pp. | Zbl

[4] Wienands U., Golubeva N., Iliev A. et al., “A racetrack lattice for the TRIUMF Kaon Factory Booster”, Proc. XV Intern. Conf. on High Energy Accelerators (Hamburg, Germany), 1992, 1073

[5] Courant E., Garen A., Wienands U. et al., “Low Momentum Compaction Lattice Study for the SSC Low Energy Booster”, IEEE Proc. Particle Accelerators (San-Francisco, CA), 1991, 2829

[6] Scheonauer H., Autin B., Cappi R. et al., “A slow-cycling proton driver for a Neutrino Factor”, Proc. Europ. Particle Accelerators Conf. (Vienna, Austria), 2000, 966

[7] Senichev Yu., A “resonant” lattice for a synchrotron with a low or negative momentum compaction factor, KEK Preprint 97–40, Tsukuba, Japan, 1997, 27 pp.

[8] Ischi Y., Machida S., Mory Y. et al., Lattice design of JHF synchrotrons, Proc. Acia Particle Accelerator Conf., Tsukuba, Japan, 1998 URL: http://hadron.kek.jp/jhf/apac98/5D002.pdf

[9] Senichev Yu., An S., Bongardt K. et al., “Lattice Design Study for HESR”, Proc. Europ. Particle Accelerators Conf. (Lucerne, Switserland), 2004, 653

[10] Senichev Yu., “The lattice with imaginary $\gamma$-transition for the CERN proton synchrotron PS2”, CERN-2007-005, BEAM-07 (Geneva, Switserland), 2007, 171

[11] Senichev Yu., “The advanced HESR lattice for improved stochastic cooling”, COOL–07 (Bad Kreuznach, Germany), 2007, 102

[12] Kostromin S., Kozlov O., Meshkov I. et al., “Lattice of NICA collider Rings”, Proc. Intern. Particle Accelerators Conf. (Kyoto, Japan), 2010, 690–692

[13] Senichev Yu., “The proposed racetrack lattice for the synchrotron light source “Astrid II””, Proc. Europ. Particle Accelerators Conf. (Stockholm, Sweden), 1998, 642

[14] Senichev Yu., “Low periodicity lattice for Third generation synchrotron light sources: avoidance of dynamic aperture reduction by sextupole compensation”, Proc. Particle Accelerators Conf. (New York), 1999, 2442