Observability of oscillations of a network from the connected objects with the distributed and concentrated parameters in a point of connection
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 142-146
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem restoration of an initial condition of a network is solved. Networks are consisting from $m$ objects with the distributed parameters, which have an object with concentrated parameters in the point of connection. Initial data are restored by the results of supervision for tension of strings in the point of their connection.
Keywords: wave equation, regional problem, elastic oscillations, controllability, clearing of oscillations.
@article{VSPUI_2011_1_a12,
     author = {A. I. Egorov and L. N. Znamenskaya},
     title = {Observability of oscillations of a network from the connected objects with the distributed and concentrated parameters in a point of connection},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {142--146},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a12/}
}
TY  - JOUR
AU  - A. I. Egorov
AU  - L. N. Znamenskaya
TI  - Observability of oscillations of a network from the connected objects with the distributed and concentrated parameters in a point of connection
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 142
EP  - 146
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a12/
LA  - ru
ID  - VSPUI_2011_1_a12
ER  - 
%0 Journal Article
%A A. I. Egorov
%A L. N. Znamenskaya
%T Observability of oscillations of a network from the connected objects with the distributed and concentrated parameters in a point of connection
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 142-146
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a12/
%G ru
%F VSPUI_2011_1_a12
A. I. Egorov; L. N. Znamenskaya. Observability of oscillations of a network from the connected objects with the distributed and concentrated parameters in a point of connection. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 142-146. http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a12/

[1] Egorov A. I., Znamenskaya L. N., “Upravleniya kolebaniyami svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Zhurn. vychisl. matematiki i matem. fiziki, 45:10 (2005), 1766–1784 | MR | Zbl

[2] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti kolebanii sistemy svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Zhurn. vychisl. matematiki i matem. fiziki, 46:6 (2006), 1002–1018 | MR

[3] Egorov A. I., Znamenskaya L. N., “Upravlyaemost uprugikh kolebanii sistem s raspredelennymi i sosredotochennymi parametrami po dvum granitsam”, Zhurn. vychisl. matematiki i matem. fiziki, 46:11 (2006), 2032–2044 | MR

[4] Egorov A. I., Znamenskaya L. N., “O granichnoi nablyudaemosti uprugikh kolebanii svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Avtomatika i telemekhanika, 2007, no. 2, 95–102

[5] Krasnopolskaya T. S., Shvets A. Yu., Regulyarnaya i khaoticheskaya dinamika sistem s ogranichennym vozbuzhdeniem, Nauch.-izdat. tsentr «Regulyarnaya i khaoticheskaya dinamika», In-t kompyuternykh issledovanii, M., Izhevsk, 2008, 280 pp.

[6] Kononenko V. O., Kolebatelnye sistemy s ogranichennym vozbuzhdeniem, Nauka, M., 1964, 254 pp.

[7] Egorov A. I., Osnovy teorii upravleniya, Fizmatlit, M., 2004, 502 pp.

[8] Egorov A. I., Znamenskaya L. N., “Ob upravlyaemosti kolebanii seti iz svyazannykh ob'ektov s raspredelennymi i sosredotochennymi parametrami”, Zhurn. vychisl. matematiki i matem. fiziki, 49:5 (2009), 815–825 | MR | Zbl