Plasma stabilization on the base of Model Predictive Control with the linear closed-loop system stability
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 116-133
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of plasma current, position and shape stabilization systems design for modern tokamaks in the frame of model predictive control approach (MPC) is considered. New control algorithm, which is based on the ideas of MPC and modal parametric optimization, is proposed. This algorithm allows to stabilize control plant in the neighborhood of the plasma equilibrium position. Within the suggested framework linear closed-loop system eigenvalues are placed in the specific desired areas on the complex plane at each time instant. Such areas are located inside the unit circle and reflect specific requirements and constraints imposed on closed-loop system stability and oscillations. The real-time implementation of the proposed algorithm requires the solution of the nonlinear programming problem at each time instant. To decrease computational consumptions, a special method is proposed with the theoretical support in the form of three proven theorems. The working capacity and effectiveness of the proposed modal-MPC algorithm is demonstrated by the example of ITER plasma stabilization.
Keywords: plasma stabilization, model predictive control, modal parametrical optimization.
@article{VSPUI_2011_1_a10,
     author = {E. I. Veremei and M. V. Sotnikova},
     title = {Plasma stabilization on the base of {Model} {Predictive} {Control} with the linear closed-loop system stability},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {116--133},
     year = {2011},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a10/}
}
TY  - JOUR
AU  - E. I. Veremei
AU  - M. V. Sotnikova
TI  - Plasma stabilization on the base of Model Predictive Control with the linear closed-loop system stability
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2011
SP  - 116
EP  - 133
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a10/
LA  - ru
ID  - VSPUI_2011_1_a10
ER  - 
%0 Journal Article
%A E. I. Veremei
%A M. V. Sotnikova
%T Plasma stabilization on the base of Model Predictive Control with the linear closed-loop system stability
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2011
%P 116-133
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a10/
%G ru
%F VSPUI_2011_1_a10
E. I. Veremei; M. V. Sotnikova. Plasma stabilization on the base of Model Predictive Control with the linear closed-loop system stability. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, no. 1 (2011), pp. 116-133. http://geodesic.mathdoc.fr/item/VSPUI_2011_1_a10/

[1] Camacho E. F., Bordons C., Model Predictive Control, Springer-Verlag, London, 2004, 405 pp.

[2] Nonlinear Model Predictive Control, eds. Allgower F., Zheng A., Birkhauser-Verlag, Basel, 2000, 472 pp. | MR

[3] Maciejowski J. M., Predictive Control with Constraints, Prentice Hall, London, 2002, 331 pp.

[4] Sotnikova M., “Plasma stabilization based on model predictive control”, Intern. J. of Modern Physics A, 24:5 (2009), 999–1008 | DOI

[5] Misenov B. A., Ovsyannikov D. A., Ovsyannikov A. D. et al., “Analysis and synthesis of plasma stabilization systems in tokamaks”, Proc. 11th IFAC Workshop. Control Applications of Optimization, v. 1, New York, 2000, 255–260

[6] Gribov Y., Albanese R., Ambrosino G. et al., “ITER-FEAT scenarios and plasma position/shape control” (Sorrento, Italy), Proc. 18th IAEA Fusion Energy Conference, 2000, ITERP/02

[7] Chernetskii V. I., Matematicheskoe modelirovanie dinamicheskikh sistem, Izd-vo Petrozavodsk. gos. un-ta, Petrozavodsk, 1996, 432 pp.

[8] Hendricks E., Jannerup O., Sorensen P. H., Linear Systems Control: Deterministic and Stochastic Methods, Springer-Verlag, Berlin, 2008, 556 pp. | MR