Nonlinear equations of flexible plates deformations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 53-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonlinear equations of deformation of flexible plates are formulated in general nonorthogonal coordinates with taking into account incompatible local deformations. The following assumptions are used. 1. Displacements of the plate from the reference (self-stressed) shape are restricted by the kinematic hypotheses of Kirchhoff — Love. 2. Elementary volumes constituting the reference shape can be locally transformed into an unstressed state by means of a nondegenerate linear transformation (hypothesis of local discharging). 3. Transformations inverse to local unloading, referred to as implants, can be found from the solution of the evolutionary problem simulating the successive deposition of infinitely thin layers on the front boundary surface of the plate. Geometric spaces of affine connection that model the global stress-free reference shape are constructed. The following special cases are considered: Weitzenböck space (with non-zero torsion), Riemann space (with non-zero curvature) and Weyl space (with non-zero non-metricity).
Keywords: hyperelasticity, flexible plates, kinematic hypothesis, nonlinear equations, asymptotic expansion, material connection.
Mots-clés : incompatible deformations
@article{VSGU_2024_30_4_a4,
     author = {K. G. Koifman and S. A. Lychev},
     title = {Nonlinear equations of flexible plates deformations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {53--83},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a4/}
}
TY  - JOUR
AU  - K. G. Koifman
AU  - S. A. Lychev
TI  - Nonlinear equations of flexible plates deformations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 53
EP  - 83
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a4/
LA  - ru
ID  - VSGU_2024_30_4_a4
ER  - 
%0 Journal Article
%A K. G. Koifman
%A S. A. Lychev
%T Nonlinear equations of flexible plates deformations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 53-83
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a4/
%G ru
%F VSGU_2024_30_4_a4
K. G. Koifman; S. A. Lychev. Nonlinear equations of flexible plates deformations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 53-83. http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a4/

[1] De Teresa J.M. (ed.), Nanofabrication: Nanolithography techniques and their applications, IOP Publishing, Bristol, UK, 2020, 450 pp. | DOI

[2] Bhushan B., “Mechanical Properties of Nanostructures”, Springer Handbook of Nanotechnology, Springer Berlin, Berlin–Heidelberg, 2005, 1305–1338 | DOI

[3] Corigliano A., Ardito R., Comi C., Frangi A., Ghisi A., Mariani S., Mechanics of Microsystems, Wiley, 2018, 424 pp. https://avidreaders.ru/book/mechanics-of-microsystems.html?ysclid=m5wcp7r7qa165607938

[4] Lychev S., Digilov A., Demin G., Gusev E., Kushnarev I., Djuzhev N., Bespalov V., “Deformations of single-crystal silicon circular plate: Theory and experiment”, Symmetry, 16:2 (2024), 137 pp. | DOI

[5] Eremeyev V.A., Altenbach H., Morozov N.F., “The influence of surface tension on the effective stiffness of nanosize plates”, Doklady Physics, 54:2 (2009), 98–100 | DOI | MR | Zbl

[6] Eremeyev V.A., “On effective properties of materials at the nano- and microscales considering surface effects”, Acta Mechanica, 227:1 (2015), 29–42 | DOI | MR

[7] Dedkova A.A., Glagolev P.Y., Gusev E.E., Djuzhev N.A., Kireev V.Y., Lychev S.A., Tovarnov D.A., “Peculiarities of Deformation of Round Thin-Film Membranes and Experimental Determination of Their Effective Characteristics”, Technical Physics, 69:2 (2024), 201–212 | DOI

[8] Timoshenko S.P., Voinovskii-Kriger S., Plastinki i obolochki, Librokom, M., 2009, 636 pp. https://djvu.online/file/VtgNwUsEoWlyW?ysclid=m5wesnio3v852550962

[9] Lebedev L.P., Cloud M.J., Eremeyev V.A., Tensor Analysis with Applications in Mechanics, World Scientific, Singapore, 2010, 363 pp. | DOI | MR | Zbl

[10] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer Berlin, Berlin–Heidelberg, 2004, 602 pp. | DOI | MR

[11] Föppl A., Vorlesungen über technische Mechanik, v. 5, B.G. Teubner Verlag, Leipzig, 1907, 408 pp. https://archive.org/details/vorlesungenuber00foppgoog/mode/2up

[12] Kármán T., Festigkeitsprobleme im Maschinenbau, B.G. Teubner Verlag, Leipzig, 1910, 311–385 | DOI

[13] Volmir A.S., Gibkie plastinki i obolochki, Gostekhizdat, M., 1956, 422 pp. https://ru.djvu.online/file/UDisSs9cFCGHW?ysclid=m5xk1o2hn3747950990

[14] Ciarlet P.G., “A justification of the von Kármán equations”, Archive for Rational Mechanics and Analysis, 73:4 (1980), 349–389 | DOI | MR | Zbl

[15] Marsden J.E., Hughes T.J.R., Mathematical Foundations of Elasticity, Dover Publications, New York, 1994, 576 pp. https://authors.library.caltech.edu/records/s9jhk-sn323

[16] Rakotomanana L., A Geometric Approach to Thermomechanics of Dissipating Continua, Birkhäuser, Boston, MA, 2004, 265 pp. | DOI | MR | Zbl

[17] Epstein M., Elzanowski M., Material Inhomogeneities and their Evolution. A Geometric Approach, Springer, Berlin–Heidelberg, 2007, 261 pp. | DOI | MR

[18] Epstein M., The geometrical language of continuum mechanics, Cambridge University Press, Cambridge, 2010, 312 pp. | DOI | MR | Zbl

[19] Steinmann P., Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity, Springer, Berlin–Heidelberg, 2015, 517 pp. | DOI | MR | Zbl

[20] Lychev S.A., Koifman K.G., “Geometric aspects of the theory of incompatible deformations. Part I. Uniform configurations”, Nanomechanics Science and Technology: An International Journal, 7:3 (2016), 177–233 | DOI | MR

[21] Lychev S., Koifman K., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, Walter de Gruyter GmbH, 2018, 370 pp. | DOI | MR

[22] Lee J.M., Introduction to Smooth Manifolds, Springer New York, New York, 2012, 708 pp. | DOI | MR

[23] Terston U., Trekhmernaya geometriya i topologiya, MTsNMO, M., 2001, 159 pp. https://djvu.online/file/d9kTToZY4xSoe?ysclid=m5xo4p5xsk264956559

[24] Nyuton I., Matematicheskie nachala naturalnoi filosofii, Nauka, M., 1989, 706 pp. https://djvu.online/file/wCBIlGHJY68zQ?ysclid=m5xq46subf880076048

[25] Pars L.A., Analiticheskaya dinamika, Nauka, M., 1971, 636 pp. https://djvu.online/file/gE3s7zpUFwIti?ysclid=m5xqeo60cm741093621

[26] Postnikov M.M., Lektsii po geometrii. Semestr I. Analiticheskaya geometriya, Nauka, M., 1979, 336 pp. https://djvu.online/file/xZDfmLpe6umCj?ysclid=m5xqn6y67s772754531

[27] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR

[28] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie, v. 2/3/1, Encyclopedia of Physics / Handbuch der Physik, ed. Flügge S., Springer, Berlin–Heidelberg, 1960, 226–858 | DOI | MR

[29] Kellogg O.D., Foundations of Potential Theory, Springer, Berlin–Heidelberg, 1967, 384 pp. | DOI | MR | Zbl

[30] Lychev S., Koifman K., Bout D., “Finite incompatible deformations in elastic solids: Relativistic approach”, Lobachevskii Journal of Mathematics, 43:7 (2022), 1908–1933 | DOI | MR | Zbl

[31] Chern S.S., Chen W.H., Lam K.S., Lectures on Differential Geometry, World Scientific Publishing, Singapore, 1999, 356 pp. https://books.google.ru/books?id=Mvk7DQAAQBAJ&redir_esc=y | Zbl

[32] Lee J.M., Introduction to Riemannian Manifolds, Springer, Cham, 2018, 437 pp. | DOI | MR | Zbl

[33] Lychev S.A., Koifman K.G., Pivovaroff N.A., “Incompatible deformations in relativistic elasticity”, Lobachevskii Journal of Mathematics, 44:6 (2023), 2352–2397 | DOI | MR | Zbl

[34] Abraham R., Marsden J.E., Ratiu T., Manifolds, tensor analysis, and applications, 2nd edition, Springer Science Business Media, 1988, 656 pp. | DOI | MR | Zbl

[35] Lychev S.A., Koifman K.G., “Contorsion of material connection in growing solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl

[36] Eckart C., “The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity”, Physical Review, 73:4 (1948), 373–382 | DOI | MR | Zbl

[37] Kröner E., “Allgemeine kontinuumstheorie der versetzungen und eigenspannungen”, Archive for Rational Mechanics and Analysis, 4:1 (1959), 273–334 | DOI | MR

[38] Lee J.M., Introduction to Topological Manifolds, Springer New York, New York, 2011, 433 pp. | DOI | MR | Zbl

[39] Bilby B.A., Bullough R., Smith E., “Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231:1185 (1955), 263–273 | DOI | MR

[40] Yavari A., Goriely A., “Riemann-Cartan geometry of nonlinear dislocation mechanics”, Archive for Rational Mechanics and Analysis, 205:1 (2012), 59–118 | DOI | MR | Zbl

[41] Miri M., Rivier N., “Continuum elasticity with topological defects, including dislocations and extramatter”, Journal of Physics A: Mathematical and General, 35:7 (2002), 1727–1739 | DOI | MR | Zbl

[42] Anthony K.H., “Die theorie der disklinationen”, Archive for Rational Mechanics and Analysis, 39:1 (1970), 43–88 | DOI | MR | Zbl

[43] Anthony K.H., “Die theorie der nichtmetrischen Spannungen in Kristallen”, Archive for Rational Mechanics and Analysis, 40:1 (1971), 50–78 | DOI | MR | Zbl

[44] Levi-Civita T., “Nozione di parallelismo in una variet'a qualunque e conseguente specificazione geometrica della curvatura riemanniana”, Rendiconti del Circolo Matematico di Palermo, 42:1 (1916), 173–204 | DOI | MR

[45] Goodbrake C., Goriely A., Yavari A., “The mathematical foundations of anelasticity: existence of smooth global intermediate configurations”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477:2245 (2021), 20200462 | DOI | MR

[46] Voigt W., “Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. II”, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 34 (1887), 53–100

[47] Cosserat E., Cosserat F., Théorie des corps d'eformables, A. Hermann et fils, Paris, 1909, 226 pp. https://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=olbp79796

[48] Mindlin R.D., “Micro-structure in linear elasticity”, Archive for Rational Mechanics and Analysis, 16:1 (1964), 51–78 | DOI | MR | Zbl

[49] Ericksen J.L., Truesdell C., “Exact theory of stress and strain in rods and shells”, Archive for Rational Mechanics and Analysis, 1:1 (1957), 295–323 | DOI | MR

[50] Reddy J.N., Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, 2006, 568 pp. | DOI

[51] Schield R.T., “Inverse deformation results in finite elasticity”, Journal of Applied Mathematics and Physics, 18 (1967), 490–500 | DOI

[52] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 259 pp. https://djvu.online/file/jUBUyrRG4xLui?ysclid=m5z7v8g7k9959065018

[53] Kanso E., Arroyo M., Tong Y., Yavari A., Marsden J.E., Desbrun M., “On the geometric character of stress in continuum mechanics”, Zeitschrift für angewandte Mathematik und Physik, 58 (2007), 843–856 | DOI | MR | Zbl

[54] Gurtin M.E., Fried E., Anand L., The Mechanics and Thermodynamics of Continua, Cambridge University Press, Cambridge, 2010, 718 pp. | DOI | MR

[55] Maugin G.A., Material Inhomogeneities in Elasticity, Chapman Hall, New York, 1993, 292 pp. | DOI | MR | Zbl

[56] Lee E.H., “Elastic-plastic deformation at finite strains”, Journal of Applied Mechanics, 36:1 (1969), 1–6 | DOI | MR | Zbl

[57] Lychev S.A., “Equilibrium equations for transversely accreted shells”, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 94:1-2 (2014), 118–129 | DOI | MR | Zbl

[58] Lychev S.A., Manzhirov A.V., “Matematicheskaya teoriya rastuschikh tel. Konechnye deformatsii”, Prikladnaya matematika i mekhanika, 77:4 (2013), 585–604 | Zbl

[59] Lychev S., Koifman K., “Nonlinear evolutionary problem for a laminated inhomogeneous spherical shell”, Acta Mechanica, 230:11 (2019), 3989–4020 | DOI | MR | Zbl

[60] Yavari A., Goriely A., “Weyl geometry and the nonlinear mechanics of distributed point defects”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468:2148 (2012), 3902–3922 | DOI | MR | Zbl

[61] Dhas B., Srinivasa A.R., Roy D., A Weyl geometric model for thermo-mechanics of solids with metrical defects, arXiv: 1904.06956