Mots-clés : incompatible deformations
@article{VSGU_2024_30_4_a4,
author = {K. G. Koifman and S. A. Lychev},
title = {Nonlinear equations of flexible plates deformations},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {53--83},
year = {2024},
volume = {30},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a4/}
}
K. G. Koifman; S. A. Lychev. Nonlinear equations of flexible plates deformations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 53-83. http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a4/
[1] De Teresa J.M. (ed.), Nanofabrication: Nanolithography techniques and their applications, IOP Publishing, Bristol, UK, 2020, 450 pp. | DOI
[2] Bhushan B., “Mechanical Properties of Nanostructures”, Springer Handbook of Nanotechnology, Springer Berlin, Berlin–Heidelberg, 2005, 1305–1338 | DOI
[3] Corigliano A., Ardito R., Comi C., Frangi A., Ghisi A., Mariani S., Mechanics of Microsystems, Wiley, 2018, 424 pp. https://avidreaders.ru/book/mechanics-of-microsystems.html?ysclid=m5wcp7r7qa165607938
[4] Lychev S., Digilov A., Demin G., Gusev E., Kushnarev I., Djuzhev N., Bespalov V., “Deformations of single-crystal silicon circular plate: Theory and experiment”, Symmetry, 16:2 (2024), 137 pp. | DOI
[5] Eremeyev V.A., Altenbach H., Morozov N.F., “The influence of surface tension on the effective stiffness of nanosize plates”, Doklady Physics, 54:2 (2009), 98–100 | DOI | MR | Zbl
[6] Eremeyev V.A., “On effective properties of materials at the nano- and microscales considering surface effects”, Acta Mechanica, 227:1 (2015), 29–42 | DOI | MR
[7] Dedkova A.A., Glagolev P.Y., Gusev E.E., Djuzhev N.A., Kireev V.Y., Lychev S.A., Tovarnov D.A., “Peculiarities of Deformation of Round Thin-Film Membranes and Experimental Determination of Their Effective Characteristics”, Technical Physics, 69:2 (2024), 201–212 | DOI
[8] Timoshenko S.P., Voinovskii-Kriger S., Plastinki i obolochki, Librokom, M., 2009, 636 pp. https://djvu.online/file/VtgNwUsEoWlyW?ysclid=m5wesnio3v852550962
[9] Lebedev L.P., Cloud M.J., Eremeyev V.A., Tensor Analysis with Applications in Mechanics, World Scientific, Singapore, 2010, 363 pp. | DOI | MR | Zbl
[10] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer Berlin, Berlin–Heidelberg, 2004, 602 pp. | DOI | MR
[11] Föppl A., Vorlesungen über technische Mechanik, v. 5, B.G. Teubner Verlag, Leipzig, 1907, 408 pp. https://archive.org/details/vorlesungenuber00foppgoog/mode/2up
[12] Kármán T., Festigkeitsprobleme im Maschinenbau, B.G. Teubner Verlag, Leipzig, 1910, 311–385 | DOI
[13] Volmir A.S., Gibkie plastinki i obolochki, Gostekhizdat, M., 1956, 422 pp. https://ru.djvu.online/file/UDisSs9cFCGHW?ysclid=m5xk1o2hn3747950990
[14] Ciarlet P.G., “A justification of the von Kármán equations”, Archive for Rational Mechanics and Analysis, 73:4 (1980), 349–389 | DOI | MR | Zbl
[15] Marsden J.E., Hughes T.J.R., Mathematical Foundations of Elasticity, Dover Publications, New York, 1994, 576 pp. https://authors.library.caltech.edu/records/s9jhk-sn323
[16] Rakotomanana L., A Geometric Approach to Thermomechanics of Dissipating Continua, Birkhäuser, Boston, MA, 2004, 265 pp. | DOI | MR | Zbl
[17] Epstein M., Elzanowski M., Material Inhomogeneities and their Evolution. A Geometric Approach, Springer, Berlin–Heidelberg, 2007, 261 pp. | DOI | MR
[18] Epstein M., The geometrical language of continuum mechanics, Cambridge University Press, Cambridge, 2010, 312 pp. | DOI | MR | Zbl
[19] Steinmann P., Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity, Springer, Berlin–Heidelberg, 2015, 517 pp. | DOI | MR | Zbl
[20] Lychev S.A., Koifman K.G., “Geometric aspects of the theory of incompatible deformations. Part I. Uniform configurations”, Nanomechanics Science and Technology: An International Journal, 7:3 (2016), 177–233 | DOI | MR
[21] Lychev S., Koifman K., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, Walter de Gruyter GmbH, 2018, 370 pp. | DOI | MR
[22] Lee J.M., Introduction to Smooth Manifolds, Springer New York, New York, 2012, 708 pp. | DOI | MR
[23] Terston U., Trekhmernaya geometriya i topologiya, MTsNMO, M., 2001, 159 pp. https://djvu.online/file/d9kTToZY4xSoe?ysclid=m5xo4p5xsk264956559
[24] Nyuton I., Matematicheskie nachala naturalnoi filosofii, Nauka, M., 1989, 706 pp. https://djvu.online/file/wCBIlGHJY68zQ?ysclid=m5xq46subf880076048
[25] Pars L.A., Analiticheskaya dinamika, Nauka, M., 1971, 636 pp. https://djvu.online/file/gE3s7zpUFwIti?ysclid=m5xqeo60cm741093621
[26] Postnikov M.M., Lektsii po geometrii. Semestr I. Analiticheskaya geometriya, Nauka, M., 1979, 336 pp. https://djvu.online/file/xZDfmLpe6umCj?ysclid=m5xqn6y67s772754531
[27] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR
[28] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie, v. 2/3/1, Encyclopedia of Physics / Handbuch der Physik, ed. Flügge S., Springer, Berlin–Heidelberg, 1960, 226–858 | DOI | MR
[29] Kellogg O.D., Foundations of Potential Theory, Springer, Berlin–Heidelberg, 1967, 384 pp. | DOI | MR | Zbl
[30] Lychev S., Koifman K., Bout D., “Finite incompatible deformations in elastic solids: Relativistic approach”, Lobachevskii Journal of Mathematics, 43:7 (2022), 1908–1933 | DOI | MR | Zbl
[31] Chern S.S., Chen W.H., Lam K.S., Lectures on Differential Geometry, World Scientific Publishing, Singapore, 1999, 356 pp. https://books.google.ru/books?id=Mvk7DQAAQBAJ&redir_esc=y | Zbl
[32] Lee J.M., Introduction to Riemannian Manifolds, Springer, Cham, 2018, 437 pp. | DOI | MR | Zbl
[33] Lychev S.A., Koifman K.G., Pivovaroff N.A., “Incompatible deformations in relativistic elasticity”, Lobachevskii Journal of Mathematics, 44:6 (2023), 2352–2397 | DOI | MR | Zbl
[34] Abraham R., Marsden J.E., Ratiu T., Manifolds, tensor analysis, and applications, 2nd edition, Springer Science Business Media, 1988, 656 pp. | DOI | MR | Zbl
[35] Lychev S.A., Koifman K.G., “Contorsion of material connection in growing solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl
[36] Eckart C., “The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity”, Physical Review, 73:4 (1948), 373–382 | DOI | MR | Zbl
[37] Kröner E., “Allgemeine kontinuumstheorie der versetzungen und eigenspannungen”, Archive for Rational Mechanics and Analysis, 4:1 (1959), 273–334 | DOI | MR
[38] Lee J.M., Introduction to Topological Manifolds, Springer New York, New York, 2011, 433 pp. | DOI | MR | Zbl
[39] Bilby B.A., Bullough R., Smith E., “Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 231:1185 (1955), 263–273 | DOI | MR
[40] Yavari A., Goriely A., “Riemann-Cartan geometry of nonlinear dislocation mechanics”, Archive for Rational Mechanics and Analysis, 205:1 (2012), 59–118 | DOI | MR | Zbl
[41] Miri M., Rivier N., “Continuum elasticity with topological defects, including dislocations and extramatter”, Journal of Physics A: Mathematical and General, 35:7 (2002), 1727–1739 | DOI | MR | Zbl
[42] Anthony K.H., “Die theorie der disklinationen”, Archive for Rational Mechanics and Analysis, 39:1 (1970), 43–88 | DOI | MR | Zbl
[43] Anthony K.H., “Die theorie der nichtmetrischen Spannungen in Kristallen”, Archive for Rational Mechanics and Analysis, 40:1 (1971), 50–78 | DOI | MR | Zbl
[44] Levi-Civita T., “Nozione di parallelismo in una variet'a qualunque e conseguente specificazione geometrica della curvatura riemanniana”, Rendiconti del Circolo Matematico di Palermo, 42:1 (1916), 173–204 | DOI | MR
[45] Goodbrake C., Goriely A., Yavari A., “The mathematical foundations of anelasticity: existence of smooth global intermediate configurations”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477:2245 (2021), 20200462 | DOI | MR
[46] Voigt W., “Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. II”, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 34 (1887), 53–100
[47] Cosserat E., Cosserat F., Théorie des corps d'eformables, A. Hermann et fils, Paris, 1909, 226 pp. https://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=olbp79796
[48] Mindlin R.D., “Micro-structure in linear elasticity”, Archive for Rational Mechanics and Analysis, 16:1 (1964), 51–78 | DOI | MR | Zbl
[49] Ericksen J.L., Truesdell C., “Exact theory of stress and strain in rods and shells”, Archive for Rational Mechanics and Analysis, 1:1 (1957), 295–323 | DOI | MR
[50] Reddy J.N., Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, 2006, 568 pp. | DOI
[51] Schield R.T., “Inverse deformation results in finite elasticity”, Journal of Applied Mathematics and Physics, 18 (1967), 490–500 | DOI
[52] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 259 pp. https://djvu.online/file/jUBUyrRG4xLui?ysclid=m5z7v8g7k9959065018
[53] Kanso E., Arroyo M., Tong Y., Yavari A., Marsden J.E., Desbrun M., “On the geometric character of stress in continuum mechanics”, Zeitschrift für angewandte Mathematik und Physik, 58 (2007), 843–856 | DOI | MR | Zbl
[54] Gurtin M.E., Fried E., Anand L., The Mechanics and Thermodynamics of Continua, Cambridge University Press, Cambridge, 2010, 718 pp. | DOI | MR
[55] Maugin G.A., Material Inhomogeneities in Elasticity, Chapman Hall, New York, 1993, 292 pp. | DOI | MR | Zbl
[56] Lee E.H., “Elastic-plastic deformation at finite strains”, Journal of Applied Mechanics, 36:1 (1969), 1–6 | DOI | MR | Zbl
[57] Lychev S.A., “Equilibrium equations for transversely accreted shells”, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 94:1-2 (2014), 118–129 | DOI | MR | Zbl
[58] Lychev S.A., Manzhirov A.V., “Matematicheskaya teoriya rastuschikh tel. Konechnye deformatsii”, Prikladnaya matematika i mekhanika, 77:4 (2013), 585–604 | Zbl
[59] Lychev S., Koifman K., “Nonlinear evolutionary problem for a laminated inhomogeneous spherical shell”, Acta Mechanica, 230:11 (2019), 3989–4020 | DOI | MR | Zbl
[60] Yavari A., Goriely A., “Weyl geometry and the nonlinear mechanics of distributed point defects”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468:2148 (2012), 3902–3922 | DOI | MR | Zbl
[61] Dhas B., Srinivasa A.R., Roy D., A Weyl geometric model for thermo-mechanics of solids with metrical defects, arXiv: 1904.06956