Solution of the Föppl – von Kármán equations for square plates
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 26-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present paper develops an approach to obtaining solutions of the Föppl – von Kármán equations for square plates, which are based on direct algebraisation of the boundary-value problem. The solution is obtained in term of expansion into basis of the space of square-integrable function. The system of eigenfunction of a linear self-adjoined operator is used as the basis. The expansion coefficients are defined by the reduction method from an infinite-dimensional system of cubic equations. It allows one to consider the proposed solution as non-linear generalisation of classic Galerkin method.
Keywords: square plates, finite deformations, nonlinear equations.
Mots-clés : Föppl – von Kármán equations
@article{VSGU_2024_30_4_a2,
     author = {A. V. Digilov and S. A. Lychev},
     title = {Solution of the {F\"oppl} {\textendash} von {K\'arm\'an} equations for square plates},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {26--45},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a2/}
}
TY  - JOUR
AU  - A. V. Digilov
AU  - S. A. Lychev
TI  - Solution of the Föppl – von Kármán equations for square plates
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 26
EP  - 45
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a2/
LA  - ru
ID  - VSGU_2024_30_4_a2
ER  - 
%0 Journal Article
%A A. V. Digilov
%A S. A. Lychev
%T Solution of the Föppl – von Kármán equations for square plates
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 26-45
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a2/
%G ru
%F VSGU_2024_30_4_a2
A. V. Digilov; S. A. Lychev. Solution of the Föppl – von Kármán equations for square plates. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 26-45. http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a2/

[1] Föppl A., Vorlesungen über technische Mechanik, v. 5, B. G. Teubner Verlag, Leipzig, 1907, 497 pp. https://archive.org/details/vorlesungenbert26fpgoog/mode/2up

[2] Kármán T., Festigkeitsprobleme im Maschinenbau, B. G. Teubner Verlag, Leipzig, 1910

[3] Lychev S., Digilov A., Djuzhev N., “Galerkin-Type Solution of the Föppl - von Kármán Equations for Square Plates”, Symmetry, 17:1 (2025), 32 pp. | DOI | MR

[4] Timoshenko S.P., Voinovskii-Kriger S., Plastinki i obolochki, Librokom, M., 2009, 636 pp. https://djvu.online/file/VtgNwUsEoWlyW?ysclid=m60p0jwao912220652

[5] Volmir A.S., Gibkie plastinki i obolochki, Gostekhizdat, M., 1956, 422 pp. https://djvu.online/file/UDisSs9cFCGHW?ysclid=m60pax8mr9205429504

[6] Sachenkov A.V., Nekhotyaev V.V., “Bolshie progiby tonkikh uprugikh plastin”, Issledovaniya po teorii plastin i obolochek, 1972, no. 8, 42–76

[7] Zhang Y., “Large deflection of clamped circular plate and accuracy of its approximate analytical solutions”, Science China Physics, Mechanics Astronomy, 59 (2016), 624602 | DOI

[8] Kkhoa D.N., Raschet gibkikh pryamougolnykh plastin po metodu posledovatelnykh approksimatsii, dis. ... kand. tekhn. nauk, Moskovskii gosudarstvennyi stroitelnyi universitet, M., 2023, 150 pp. https://mgsu.ru/science/Dissoveti/Zashita_dissert/dao-ngokkkhoa/Dissertatsiya_DaoNK.pdf

[9] Panov D.Iu., “Application of Acad. B.G. Galerkin's method to certain nonlinear problems of the theory of elasticity”, Prikladnaya Matematika i Mekhanika, 3:2 (1939) | Zbl

[10] Yamaki N., “Influence of Large Amplitudes on Free Flexural Vibrations of Elastic Plates”, ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 41:12 (1961), 501–510 | DOI | MR | Zbl

[11] Sundara Raja Iyengar K.T., Matin Naqvi M., “Large deflection of rectangular plates”, International Journal of Non-Linear Mechanics, 1:2 (1966), 109–122 | DOI | Zbl

[12] Dai H.H., Paik J.K., Atluri S.N., “The Global Nonlinear Galerkin Method for the Analysis of Elastic Large Deflections of Plates under Combined Loads: A Scalar Homotopy Method for the Direct Solution of Nonlinear Algebraic Equations”, Computers, Materials and Continua, 23:1 (2011), 69–100 | DOI | MR

[13] Dai H.H., Paik J.K., Atluri S.N., “The Global Nonlinear Galerkin Method for the Solution of von Karman Nonlinear Plate Equations: An Optimal Faster Iterative Method for the Direct Solution of Nonlinear Algebraic Equations $f (x) = 0$, using $x = \lambda[\alpha F+(1-\alpha)btf]$”, Computers, Materials and Continua, 23:2 (2011), 155–186 | DOI | Zbl

[14] Dai H., Yue X., Atluri S.N., “Solutions of the von Kármán plate equations by a Galerkin method, without inverting the tangent stiffness matrix”, Journal of Mechanics of Materials and Structures, 9:2 (2014), 195–226 | DOI

[15] Wang X., Liu X.,Wang J., Zhoue Y., “A wavelet method for bending of circular plate with large deflection”, Acta Mechanica Solida Sinica, 28:1 (2015), 83–90 | DOI | MR

[16] Zhang L., Wang J., Zhou Y.H., “Wavelet solution for large deflection bending problems of thin rectangular plates”, Archive of Applied Mechanics, 85 (2015), 355–365 | DOI | MR | Zbl

[17] Lurie A.I., Theory of elasticity, Springer Science Business Media, Berlin–Heidelberg, 2010, 1050 pp. | DOI | MR

[18] Ciarlet P.G., Mathematical Elasticity, v. 1, Three-dimensional elasticity, Elsevier, Amsterdam, 1988, 452 pp. | MR

[19] Ciarlet P.G., Mathematical Elasticity: Theory of Plates, Elsevier, 1997 | MR | Zbl

[20] Kolmogorov A.N., Fomin S.V., Introductory real analysis, Courier Corporation, New York, 1975, 403 pp. https://archive.org/details/IntroductoryRealAnalysis | MR

[21] Cantor G., “Ein beitrag zur mannigfaltigkeitslehre”, Journal für die reine und angewandte Mathematik (Crelles Journal), 1878:84 (1878), 242–258 | DOI | MR

[22] Koyalovich B.M., “A study of infinite systems of linear algebraic equations”, Izv. Fiz.-Mat. Inst., 3 (1930), 41–167

[23] Kantorovich L.V., Krylov V.I., Approximate methods of higher analysis, Dover Publications, New York, 2018 | MR | Zbl

[24] Levy S., Bending of Rectangular Plates with Large Deflections, NACA Technical Notes, 1942, 19 pp. https://digital.library.unt.edu/ark:/67531/metadc59995