Boundary value problems for discontinuously loaded parabolic equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 7-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article deals with boundary value problems for a discontinuously loaded parabolic equation with a Riemann – Liouville fractional integro-differentiation operator with variable coefficients. The unambiguous solvability of the Cauchy – Dirichlet problem for a discontinuously loaded parabolic equation of fractional order is proved. The paper also examines the existence and uniqueness of the solution of the first boundary value problem for a discontinuously loaded parabolic equation. Using the method of the Green function, using the properties of the fundamental solution of the corresponding homogeneous equation, as well as assuming that the coefficients of the equation are bounded, continuous and satisfy the Helder condition, while remaining non-negative, it is shown that the solution of the problem is reduced to a system of Volterra integral equations of the second kind.
Keywords: boundary value problems, Cauchy – Dirichlet problem, fractional integro differentiation operator, first boundary value problem, Green's function, loaded equation, regular solution.
Mots-clés : parabolic equations
@article{VSGU_2024_30_4_a0,
     author = {M. M. Karmokov and F. M. Nakhusheva and S.Kh. Gekkieva},
     title = {Boundary value problems for discontinuously loaded parabolic equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--17},
     year = {2024},
     volume = {30},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a0/}
}
TY  - JOUR
AU  - M. M. Karmokov
AU  - F. M. Nakhusheva
AU  - S.Kh. Gekkieva
TI  - Boundary value problems for discontinuously loaded parabolic equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 7
EP  - 17
VL  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a0/
LA  - ru
ID  - VSGU_2024_30_4_a0
ER  - 
%0 Journal Article
%A M. M. Karmokov
%A F. M. Nakhusheva
%A S.Kh. Gekkieva
%T Boundary value problems for discontinuously loaded parabolic equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 7-17
%V 30
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a0/
%G ru
%F VSGU_2024_30_4_a0
M. M. Karmokov; F. M. Nakhusheva; S.Kh. Gekkieva. Boundary value problems for discontinuously loaded parabolic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 4, pp. 7-17. http://geodesic.mathdoc.fr/item/VSGU_2024_30_4_a0/

[1] Nakhushev A.M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012, 232 pp. https://djvu.online/file/GKTM9Py0MW2jl

[2] Nakhushev A.M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp. https://djvu.online/file/vpPGn035lVZDw

[3] Nakhushev A.M., “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:1 (1976), 103–108 | MR | Zbl

[4] Karmokov M.M., Lokalnye i nelokalnye kraevye zadachi dlya razryvno-nagruzhennykh parabolicheskikh uravnenii, dis.... kand. fiz.-mat. nauk, Nalchik, 1991, 87 pp.

[5] Karmokov M.M., Nakhusheva F.M., Abregov M.Kh., “Kraevaya zadacha dlya nagruzhennogo parabolicheskogo uravneniya drobnogo poryadka”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2024, no. 1 (117), 69–77 | DOI

[6] Kozhanov A.I., “Nelokalnaya po vremeni kraevaya zadacha dlya lineinykh parabolicheskikh uravnenii”, Sibirskii zhurnal industrialnoi matematiki, 7:1 (17) (2004), 51–60 | Zbl

[7] Kozhanov A.I., “O razreshimosti kraevoi zadachi s nelokalnym granichnym usloviem dlya lineinykh parabolicheskikh uravnenii”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 2004, no. 30, 63–69 | DOI

[8] Dikinov Kh.Zh., Kerefov A.A., Nakhushev A.M., “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya teploprovodnosti”, Differents. uravneniya, 12:1 (1976), 177–179 | MR | Zbl

[9] Pskhu A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp. https://libcats.org/book/729565

[10] Gekkieva S.Kh., “Smeshannye kraevye zadachi dlya nagruzhennogo diffuzionno-volnovogo uravneniya”, Nauchnye vedomosti BelGU. Seriya: Matematika. Fizika, 6 (227):42 (2016), 32–35 http://dspace.bsuedu.ru/handle/123456789/59383

[11] Beilin A.B., Bogatov A.V., Pulkina L.S., “Zadacha s nelokalnymi usloviyami dlya odnomernogo parabolicheskogo uravneniya”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki, 26:2 (2022), 380–395 | DOI | Zbl

[12] Kozhanov A.I., Ashurova G.R., “Parabolicheskie uravneniya s vyrozhdeniem i neizvestnym koeffitsientom”, Matematicheskie zametki SVFU, 31:1 (2024), 56–69 | DOI

[13] Bogatov A.V., Pulkina L.S., “Razreshimost obratnoi koeffitsientnoi zadachi s integralnym pereopredeleniem dlya odnomernogo parabolicheskogo uravneniya”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya, 28:3-4 (2022), 7–17 | DOI | MR | Zbl

[14] Nakhusheva F.M., Lafisheva M.M., Karmokov M.M., Dzhankulaeva M.A., “Chislennyi metod resheniya kraevoi zadachi dlya parabolicheskogo uravneniya s drobnoi proizvodnoi po vremeni s sosredotochennoi teploemkostyu”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2018, no. 5 (85), 34–43

[15] Beshtokov M.Kh., Vodakhova V.A., Isakova M.M., “Priblizhennoe reshenie pervoi kraevoi zadachi dlya nagruzhennogo uravneniya teploprovodnosti”, Matematicheskaya fizika i kompyuternoe modelirovanie, 26:4 (2023), 5–17 | DOI | MR

[16] Pogorzelski W., “Etude de la solution fondamentale de l'equation parabolique”, Ricerche di Matematica, 5 (1956), 25–57 | MR | Zbl

[17] Ilin A.M., Kalashnikov A.S., Oleinik O.A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi matematicheskikh nauk, 17:3 (105) (1962), 31–46