Mots-clés : dipole-dipole interaction, entanglement, one-photon transitions
@article{VSGU_2024_30_3_a6,
author = {A. R. Bagrov and E. K. Bashkirov},
title = {Dynamics of entanglement of qubits in the three-qubit {Tavis{\textendash}Cummings} model with dipole-dipole interaction},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {89--103},
year = {2024},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a6/}
}
TY - JOUR AU - A. R. Bagrov AU - E. K. Bashkirov TI - Dynamics of entanglement of qubits in the three-qubit Tavis–Cummings model with dipole-dipole interaction JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2024 SP - 89 EP - 103 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a6/ LA - ru ID - VSGU_2024_30_3_a6 ER -
%0 Journal Article %A A. R. Bagrov %A E. K. Bashkirov %T Dynamics of entanglement of qubits in the three-qubit Tavis–Cummings model with dipole-dipole interaction %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2024 %P 89-103 %V 30 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a6/ %G ru %F VSGU_2024_30_3_a6
A. R. Bagrov; E. K. Bashkirov. Dynamics of entanglement of qubits in the three-qubit Tavis–Cummings model with dipole-dipole interaction. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 89-103. http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a6/
[1] Buluta I., Ashhab S., Nori F., “Natural and artificial atoms for quantum computation”, Reports on Progress in Physics, 74:10 (2011), 104401 | DOI
[2] Xiang Z.L., Ashhab S., You J.Y., Nori F., “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Reviews of Modern Physics, 85:2 (2013), 623–653 | DOI
[3] Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F., “Microwave photonics with superconducting quantum circuits”, Physics Reports, 718–719 (2017), 1–102 | DOI | MR | Zbl
[4] Arute F. [et al., “Quantum supremacy using a programmable superconducting processor”, Nature, 574 (2019), 505–510 | DOI
[5] Ball P., “First quantum computer to pack 100-qubits enters crowded race”, Nature, 599 (2021) | DOI
[6] Georgescu I.M., Ashhab S., Nori P., “Quantum simulation”, Reviews of Modern Physics, 86:1 (2014), 153–185 | DOI
[7] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Reports on Progress in Physics, 80:10 (2017), 1–60 | DOI | MR
[8] Peres A., “Separability Criterion for Density Matrices”, Physical Review Letters, 77:8 (1996), 1413–1415 | DOI | MR | Zbl
[9] Horodecki R., Horodecki M., Horodecki P., “Separability of Mixed States: Necessary and Sufficient Condition”, Physics Letters A, 223 (1996), 333–339 | DOI | MR
[10] Wooters W.K., “Entanglement of Formation of an Arbitrary State of Two Qubits”, Physical Review Letters, 80:10 (1998), 2245–2248 | DOI
[11] Kazuyuki F., Kyoko H., Ryosuke K., Tatsuo S., Yukako W., “Explicit Form of the Evolution Operator of TAVIS-CUMMINGS Model: Three and Four Atoms Cases”, International Journal of Geometric Methods in Modern Physics, 01:06 (2012), 721–730 | DOI
[12] Liu H.P., Cai J.F., “Entanglement in Three-Atom Tavis Cummings Model Induced by a Thermal Field”, Communications in Theoretical Physics, 43:3 (2005), 427–431 | DOI
[13] Cirac J.I., Vidal G., Dur W., “Three qubits can be entangled in two inequivalent ways”, Physical Review A, 62:6 (2000), 062314 | DOI | MR
[14] Garcia-Alcaine G., Sabin C., “A classification of entanglement in three-qubit systems”, The European Physical Journal D, 48:3 (2008), 435–442 | DOI | MR
[15] Youssef M., Metwally N., Obada A.-S.F., “Some entanglement features of a three-atom Tavis-Cummings model: a cooperative case”, Journal of Physics B: Atomic, Molecular and Optical Physics, 43 (2010), 095501, arXiv: 0908.4337 | DOI
[16] Han K.H., Kye S.H., “The role of phases in detecting three-qubit entanglement”, Journal of Mathematical Physics, 58:10 (2017), 102201 | DOI | MR | Zbl
[17] Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M. Entanglement Classification for a Three-qubit System using Special Unitary Groups, SU(2) and SU(4), International Journal of Advanced Computer Science and Applications, 10:7 (2019), 374–379 | DOI
[18] Aguiar L.S., Munhoz P.P., Vidiella-Barranco A., Roversi J.A., “The entanglement of two dipole-dipole coupled atoms in a cavity interacting with a thermal field”, Journal of Optics B: Quantum and Semiclassical Optics, 39:11 (2005), 2619 | DOI
[19] Akbari-Kourbolagh Y., “Entanglement criteria for the three-qubit states”, International Journal of Quantum Information, 15:07 (2017), 1750049 | DOI | MR | Zbl
[20] Bashkirov E.K., Stupatskaya M.P., “The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise”, Laser Physics, 19:3 (2009), 525–530 | DOI
[21] Valizadeh S., Tavassoly M.K., Yazdanpanah N., “Stability of various entanglements in the interaction between two two-level atoms with a quantized field under the influences of several decay sources”, Indian Journal of Physics, 92:8 (2018), 955–968 | DOI
[22] Zhang G.-f., Chen Z.-y., “The entanglement character between atoms in the non-degenerate two photons Tavis-Cummings model”, Optics Communications, 275:1 (2007), 274–277 | DOI | MR
[23] Bagrov A.R., Bashkirov E.K., “Dinamika teplovogo pereputyvaniya par kubitov v trekhkubitnoi modeli Tavisa-Kammingsa”, Zhurnal tekhnicheskoi fiziki, 94:3 (2024), 341–350 | DOI