Dynamics of entanglement of qubits in the three-qubit Tavis–Cummings model with dipole-dipole interaction
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 89-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article studies the dynamics of pairwise entanglement of three qubits, two of which are trapped in a resonator and interact with a single-mode ideal resonator through single-photon transitions, and the third qubit is outside the resonator. This takes into account the dipole-dipole coupling between the isolated qubit and the qubit in the resonator. We have found a solution to the quantum nonstationary Schrodinger equation for the total wave function of the system for the initial separable and biseparable states of qubits and the thermal initial state of the resonator field. Using these solutions, the criterion of entanglement of qubit pairs — negativity is calculated. The results of numerical simulation of the negativity criterion have shown that the including of a small dipole-dipole coupling between an isolated and one of the trapped qubits can lead to significant entanglement of qubit pairs for all initial states. There is a transition of entanglement from one pair of atoms to other pairs of atoms during the evolution of the system. It is also shown that for some separable and biseparable states, the dipole-dipole interaction can suppress the effect of sudden death of entanglement.
Keywords: qubits, coplanar resonator, sudden death of entanglement, negativity, thermal field.
Mots-clés : dipole-dipole interaction, entanglement, one-photon transitions
@article{VSGU_2024_30_3_a6,
     author = {A. R. Bagrov and E. K. Bashkirov},
     title = {Dynamics of entanglement of qubits in the three-qubit {Tavis{\textendash}Cummings} model with dipole-dipole interaction},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {89--103},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a6/}
}
TY  - JOUR
AU  - A. R. Bagrov
AU  - E. K. Bashkirov
TI  - Dynamics of entanglement of qubits in the three-qubit Tavis–Cummings model with dipole-dipole interaction
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 89
EP  - 103
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a6/
LA  - ru
ID  - VSGU_2024_30_3_a6
ER  - 
%0 Journal Article
%A A. R. Bagrov
%A E. K. Bashkirov
%T Dynamics of entanglement of qubits in the three-qubit Tavis–Cummings model with dipole-dipole interaction
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 89-103
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a6/
%G ru
%F VSGU_2024_30_3_a6
A. R. Bagrov; E. K. Bashkirov. Dynamics of entanglement of qubits in the three-qubit Tavis–Cummings model with dipole-dipole interaction. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 89-103. http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a6/

[1] Buluta I., Ashhab S., Nori F., “Natural and artificial atoms for quantum computation”, Reports on Progress in Physics, 74:10 (2011), 104401 | DOI

[2] Xiang Z.L., Ashhab S., You J.Y., Nori F., “Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems”, Reviews of Modern Physics, 85:2 (2013), 623–653 | DOI

[3] Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F., “Microwave photonics with superconducting quantum circuits”, Physics Reports, 718–719 (2017), 1–102 | DOI | MR | Zbl

[4] Arute F. [et al., “Quantum supremacy using a programmable superconducting processor”, Nature, 574 (2019), 505–510 | DOI

[5] Ball P., “First quantum computer to pack 100-qubits enters crowded race”, Nature, 599 (2021) | DOI

[6] Georgescu I.M., Ashhab S., Nori P., “Quantum simulation”, Reviews of Modern Physics, 86:1 (2014), 153–185 | DOI

[7] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Reports on Progress in Physics, 80:10 (2017), 1–60 | DOI | MR

[8] Peres A., “Separability Criterion for Density Matrices”, Physical Review Letters, 77:8 (1996), 1413–1415 | DOI | MR | Zbl

[9] Horodecki R., Horodecki M., Horodecki P., “Separability of Mixed States: Necessary and Sufficient Condition”, Physics Letters A, 223 (1996), 333–339 | DOI | MR

[10] Wooters W.K., “Entanglement of Formation of an Arbitrary State of Two Qubits”, Physical Review Letters, 80:10 (1998), 2245–2248 | DOI

[11] Kazuyuki F., Kyoko H., Ryosuke K., Tatsuo S., Yukako W., “Explicit Form of the Evolution Operator of TAVIS-CUMMINGS Model: Three and Four Atoms Cases”, International Journal of Geometric Methods in Modern Physics, 01:06 (2012), 721–730 | DOI

[12] Liu H.P., Cai J.F., “Entanglement in Three-Atom Tavis Cummings Model Induced by a Thermal Field”, Communications in Theoretical Physics, 43:3 (2005), 427–431 | DOI

[13] Cirac J.I., Vidal G., Dur W., “Three qubits can be entangled in two inequivalent ways”, Physical Review A, 62:6 (2000), 062314 | DOI | MR

[14] Garcia-Alcaine G., Sabin C., “A classification of entanglement in three-qubit systems”, The European Physical Journal D, 48:3 (2008), 435–442 | DOI | MR

[15] Youssef M., Metwally N., Obada A.-S.F., “Some entanglement features of a three-atom Tavis-Cummings model: a cooperative case”, Journal of Physics B: Atomic, Molecular and Optical Physics, 43 (2010), 095501, arXiv: 0908.4337 | DOI

[16] Han K.H., Kye S.H., “The role of phases in detecting three-qubit entanglement”, Journal of Mathematical Physics, 58:10 (2017), 102201 | DOI | MR | Zbl

[17] Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M. Entanglement Classification for a Three-qubit System using Special Unitary Groups, SU(2) and SU(4), International Journal of Advanced Computer Science and Applications, 10:7 (2019), 374–379 | DOI

[18] Aguiar L.S., Munhoz P.P., Vidiella-Barranco A., Roversi J.A., “The entanglement of two dipole-dipole coupled atoms in a cavity interacting with a thermal field”, Journal of Optics B: Quantum and Semiclassical Optics, 39:11 (2005), 2619 | DOI

[19] Akbari-Kourbolagh Y., “Entanglement criteria for the three-qubit states”, International Journal of Quantum Information, 15:07 (2017), 1750049 | DOI | MR | Zbl

[20] Bashkirov E.K., Stupatskaya M.P., “The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise”, Laser Physics, 19:3 (2009), 525–530 | DOI

[21] Valizadeh S., Tavassoly M.K., Yazdanpanah N., “Stability of various entanglements in the interaction between two two-level atoms with a quantized field under the influences of several decay sources”, Indian Journal of Physics, 92:8 (2018), 955–968 | DOI

[22] Zhang G.-f., Chen Z.-y., “The entanglement character between atoms in the non-degenerate two photons Tavis-Cummings model”, Optics Communications, 275:1 (2007), 274–277 | DOI | MR

[23] Bagrov A.R., Bashkirov E.K., “Dinamika teplovogo pereputyvaniya par kubitov v trekhkubitnoi modeli Tavisa-Kammingsa”, Zhurnal tekhnicheskoi fiziki, 94:3 (2024), 341–350 | DOI