A simple mechanical model of turbulence
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 63-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work examines the control and stabilization problems of vibrations in a hierarchical chain of oscillators with hysteresis couplings. Hysteresis coupling is formalized within the Bouc–Wen phenomenological model. The mass, stiffness, and damping properties of the oscillators are set to follow a specific scaling rule and decrease exponentially along the chain, thus forming a hierarchy. The model is verified using Kolmogorov's hypotheses. To do this, energy spectra are constructed under hysteresis in coupling and without it at different amplitudes of the external excitation. As a result of computational experiments, it is shown that for a chain with hysteresis couplings at a high amplitude of excitation, the energy spectrum curve sufficiently corresponds to Kolmogorov's hypotheses. The amplitude-frequency characteristics of the system are calculated under hysteresis in coupling using the frequency scanning method. In numerical experiments, frequency ranges of external excitation are identified, which correspond to the chaotic behavior of oscillators and their synchronization.
Mots-clés : turbulence
Keywords: Kolmogorov's hypotheses, hysteresis, Bouc–Wen model.
@article{VSGU_2024_30_3_a4,
     author = {M. E. Semenov and A. V. Tolkachev and O. I. Kanishcheva},
     title = {A simple mechanical model of turbulence},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {63--75},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a4/}
}
TY  - JOUR
AU  - M. E. Semenov
AU  - A. V. Tolkachev
AU  - O. I. Kanishcheva
TI  - A simple mechanical model of turbulence
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 63
EP  - 75
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a4/
LA  - ru
ID  - VSGU_2024_30_3_a4
ER  - 
%0 Journal Article
%A M. E. Semenov
%A A. V. Tolkachev
%A O. I. Kanishcheva
%T A simple mechanical model of turbulence
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 63-75
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a4/
%G ru
%F VSGU_2024_30_3_a4
M. E. Semenov; A. V. Tolkachev; O. I. Kanishcheva. A simple mechanical model of turbulence. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 63-75. http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a4/

[1] Landau L.D., Lifshitz E.M., Fluid mechanics, Pergamon Press, Oxford, 1986, 551 pp. | MR

[2] Friedlander S., Topper L., Turbulence: classic papers on statistical theory, Interscience Publishers LTD, London, 1961, 187 pp. https://cfd.spbstu.ru/agarbaruk/doc/1961_Turbulence | MR | Zbl

[3] Townsend A.A., The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, 1976, 416 pp. https://books.google.ru/books?id=0wuu9y8vRagC&printsec=frontcover&hl=ru | Zbl

[4] Tropea C., Yarin A., Foss J., Springer Handbook of Experimental Fluid Mechanics, Springer, Berlin, 2007, 237 pp. | DOI

[5] Davidson L., An Introduction to Turbulence Models, Chalmers University of Technology, Goteborg, 2011, 50 pp. https://cfd.spbstu.ru/agarbaruk/doc/2011_Davidson_An-introduction-to-turbulence-models.pdf | MR

[6] Hirsch C., Numerical Computation of Internal and External Flows, Second edition, Elsevier, Oxford, 2007, 538 pp. https://cfd.spbstu.ru/agarbaruk/doc/Hirsch

[7] Meyers J., Geurts B.J., Sagaut P., Quality and Reliability of Large-Eddy Simulations, Springer, Berlin–New York, 2008, 378 pp. | DOI | MR | Zbl

[8] Frohlich J., von Terzi D., “Hybrid LES/RANS methods for the simulation of turbulent flows”, Progress in Aerospace Sciences, 44:5 (2008), 349–377 | DOI

[9] Schiestel R., Modeling and simulation of turbulent flows, John Wiley and Sons Ltd, Hoboken, 2008, 725 pp. https://download.e-bookshelf.de/download/0000/5720/27/L-G-0000572027-0002358757.pdf

[10] McComb W.D., Homogeneous, Isotropic Turbulence: Phenomenology, Renormalization and Statistical Closures, Oxford University Press, Oxford, 2014, 408 pp. https://readli.net/homogeneous-isotropic-turbulence-phenomenology-renormalization-and-statistical-closures/ | MR | Zbl

[11] Zadorozhnyi V.G., “Lineinyi khaoticheskii rezonans pri vikhrevom dvizhenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 53:4 (2013), 486–502 | MR

[12] Kolmogorov A.N., “Lokalnaya struktura turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, Uspekhi fizicheskikh nauk, 93:3 (1967), 476–481 | DOI | Zbl

[13] Krasnoselskii M.A., Pokrovskii A.V., Systems with hysteresis, Springer-Verlag, Berlin, 1989, 410 pp. | DOI | MR | Zbl

[14] Visintin A., Differential models of hysteresis, Springer-Verlag, New York, 1994, 409 pp. | DOI | MR | Zbl

[15] Antonelli M., Carboni B., Lacarbonara W., Bernardini D., Kalmar-Nagy T., “Quantifying ratedependence of a nonlinear hysteretic device”, Nonlinear Dynamics of Structures, Systems and Devices, 1 (2020), 347–355 | DOI | MR

[16] Carboni B., Lacarbonara W., Brewick P., Masri S., “Dynamical response identification of a class of nonlinear hysteretic systems”, Journal of Intelligent Material Systems and Structures, 29:13 (2018), 2795–2810 | DOI

[17] Mayergoyz I.D., Mathematical Models of Hysteresis, Spinger-Verlag, New York, 1991, 207 pp. | DOI | MR

[18] Weiss P., Freundereich J.D., “Etude de l'aimantation initiale enfunction de la temperature”, Archives des Sciences Physiques et Naturelles, 42 (1916), 449–470

[19] Preisach F., “Uber die magnetische nachwirkung”, Zeitschrift fur Physik, 94 (1935), 277–302 | DOI

[20] Semenov M.E., Borzunov S.V., Meleshenko P.A., “Stochastic Preisach operator: definition within the design approach”, Nonlinear Dynamics, 101:11 (2020), 2599–2614 | DOI | Zbl

[21] Borzunov S.V., Semenov M.E., Sel'vesyuk N.I., Meleshenko P.A., Solovyov A.M., “Stochastic model of a hysteresis converter with a domain structure”, Mathematical Models and Computer Simulations, 14:2 (2022), 305–321 | DOI | MR

[22] Semenov M.E., Borzunov S.V., Meleshenko P.A., “A New Way to Compute the Lyapunov Characteristic Exponents for Non-Smooth and Discontinues Dynamical Systems”, Nonlinear Dynamics, 109:3 (2022), 1805–1821 | DOI

[23] Lacarbonara W., Vestroni F., “Nonclassical responses of oscillators with hysteresis”, Nonlinear Dynamics, 32 (2003), 235–258 | DOI | Zbl

[24] Charalampakis A.E., “The response and dissipated energy of Bouc-Wen hysteretic model revisited”, Archive of Applied Mechanics, 85 (2015), 1209–1223 | DOI | Zbl

[25] Ikhouane F., Rodellar J., “On the Hysteretic Bouc-Wen Model”, Nonlinear Dynamics, 42 (2005), 63–78 | DOI | MR | Zbl

[26] Iwan W.D., “A distributed-element model for hysteresis and its steady-state dynamic response”, Journal of Applied Mechanics, 33:4 (1966), 893–900 | DOI

[27] Lin C.-J., Lin P.-T., “Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model”, Computers and Mathematics with Applications, 64:5 (2012), 766–787 | DOI

[28] Flynn D., Zhezherun A., Pokrovskii A., O'Kane J.P., “Modeling discontinuous flow through porous media using ODEs with Preisach operator”, Physica B: Condensed Matter, 403:2-3 (2008), 440–442 | DOI

[29] Khatuntseva O.N., “Analysis of the reasons for an aerodynamic hysteresis in flight tests of the Soyuz reentry capsule at the hypersonic segment of its descent”, Journal of Applied Mechanics and Technical Physics, 52 (2011), 544–552 | DOI | Zbl

[30] Bak B.D., Kalmar-Nagu T., “Energy cascade in a nonlinear mechanistic model of turbulence”, Technische Mechanik, 39:1 (2019), 64–71 | DOI

[31] Vakakis A.F., Gendelman O.V., Bergman L.A., McFarland D.M., Kerschen G., Lee Y.S., Nonlinear targeted energy transfer in mechanical and structural systems, Springer, Berlin, 2009, 1033 pp. | DOI

[32] Vakakis A.F., Gendelman O., “Energy pumping in nonlinear mechanical oscillators: part II resonance capture”, Journal of Applied Mechanics, 68:1 (2001), 42–48 | DOI | MR | Zbl

[33] Semenov M.E., Reshetova O.O., Solovyov A.M., Tolkachev A.V., Meleshenko P.A., “Oscillations under hysteretic conditions: from simple oscillator to discrete sine-Gordon model”, Topics in Nonlinear Mechanics and Physics - Selected Papers from CSNDD 2018, Springer Proceedings in Physics, 2019, 229–253 | DOI | MR | Zbl

[34] Meleshenko P.A., Nesterov V.A., Semenov M.E., Solovyov A.M., Sypalo K.I., “Stabilization of a system of unstable pendulums: discrete and continuous case”, Journal of Computer and Systems Sciences International, 61:1 (2022), 135–154 | DOI | MR | Zbl

[35] Chen J.E., Theurich T., Krack M., Sapsis T., Bergman L.A., Vakakis A.F., “Intense crossscale energy cascades resembling “mechanical turbulence” in harmonically driven strongly nonlinear hierarchical chains of oscillators”, Acta Mechanica, 233 (2022), 1289–1305 | DOI | MR | Zbl

[36] Chen J.E., Sun M., Zhang W., Li S.B., Wu R.Q., “Cross-scale energy transfer of chaotic oscillator chain in stiffness-dominated range”, Nonlinear Dynamics, 110 (2022), 2849–2867 | DOI

[37] Rosenstein M.T., Collins J.J., De Luca C.J., “A practical method for calculating largest Lyapunov exponents from small data sets”, Physica D: Nonlinear Phenomena, 65 (1993), 117–134 | DOI | MR | Zbl

[38] Medvedsky A.L., Meleshenko P.A., Nesterov V.A., Reshetova O.O., Semenov M.E., “Dynamics of hysteretic-related Van-Der-Pol oscillators: the small parameter method”, Journal of Computer and Systems Sciences International, 60:4 (2021), 511–529 | DOI | MR | Zbl