Mots-clés : Euler–Bernoulli beam
@article{VSGU_2024_30_3_a3,
author = {E. A. Karpov},
title = {Dynamics of the {Euler{\textendash}Bernoully} beam with distributed hysteresis properties},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {35--62},
year = {2024},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a3/}
}
TY - JOUR AU - E. A. Karpov TI - Dynamics of the Euler–Bernoully beam with distributed hysteresis properties JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2024 SP - 35 EP - 62 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a3/ LA - ru ID - VSGU_2024_30_3_a3 ER -
E. A. Karpov. Dynamics of the Euler–Bernoully beam with distributed hysteresis properties. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 35-62. http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a3/
[1] Timoshenko S., History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures, Dover Civil and Mechanical Engineering Series, Dover Publications, New York, 1983 https://archive.org/details/historyofstrengt0000timo_k8r2 | MR
[2] Elishakoff I., Who developed the so-called Timoshenko beam theory?, Mathematics and Mechanics of Solids, 25:1 (2020), 97–116 | DOI | MR | Zbl
[3] Bauchau O.A., Craig J.I., “Euler - Bernoulli Beam Theory”, Solid Mechanics and Its Applications, Springer Netherlands, Dordrecht, 2009, 173-221 | DOI
[4] Esen I., “Dynamics of size-dependant Timoshenko micro beams subjected to moving loads”, International Journal of Mechanical Sciences, 175 (2020), 105501 | DOI
[5] Krysko A., Awrejcewicz J., Kutepov I., Krysko V., “Stability of curvilinear Euler - Bernoulli beams in temperature fields”, International Journal of Non-Linear Mechanics, 94 (2017), 207–215 | DOI
[6] Semenov M., Reshetova O., Borzunov S., Meleshenko P., “Self-oscillations in a system with hysteresis: the small parameter approach”, The European Physical Journal Special Topics, 230 (2021), 3565–3571 | DOI | MR
[7] Semenov M., Solovyov A., Meleshenko P., Balthazar J., “Nonlinear Damping: From Viscous to Hysteretic Dampers”, Recent Trends in Applied Nonlinear Mechanics and Physics, 2018, 259-275, Springer, Cham | DOI | MR
[8] Semenov M., Solovyov A., Meleshenko P., Reshetova O., “Efficiency of hysteretic damper in oscillating systems”, Mathematical Modelling of Natural Phenomena, 15 (2020), 43 | DOI | MR | Zbl
[9] Semenov M., Reshetova O., Tolkachev A., Solovyov A., Meleshenko P., “Oscillations Under Hysteretic Conditions: From Simple Oscillator to Discrete Sine-Gordon Model”, Topics in Nonlinear Mechanics and Physics, Springer Proceedings in Physics, 228, ed. Belhaq M., Springer, Singapore, 2019, 229-253 | DOI | MR | Zbl
[10] Medvedskii A., Meleshenko P., Nesterov V., Reshetova O., Semenov M., Solovyov A., “Unstable oscillating systems with hysteresis: Problems of stabilization and control”, Journal of Computer and Systems Sciences International, 59 (2020), 533–556 | DOI | MR | Zbl
[11] Semenov M., Borzunov S., Meleshenko P., “Stochastic preisach operator: definition within the design approach”, Nonlinear Dynamics, 101 (2020), 2599–2614 | DOI | Zbl
[12] Semenov M., Borzunov S., Meleshenko P., “A new way to compute the Lyapunov characteristic exponents for non-smooth and discontinues dynamical systems”, Nonlinear Dynamics, 109 (2022), 1805–1821 | DOI
[13] Semenov M., Meleshenko P., Borzunov S., Reshetova O., Barsukov A., “A Simple Model of the Energy Harvester within a Linear and Hysteresis Approach”, Micromachines, 14:2 (2023), 310 | DOI | MR
[14] Borzunov S., “Transformatsiya kolebanii neustoichivoi sistemy v preobrazovatele-nakopitele energii”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya / Vestnik of Samara University. Natural Science Series, 29:2 (2023), 7–18 | DOI | MR
[15] Semenov M., Solovyov A., Meleshenko P., “Stabilization of coupled inverted pendula: From discrete to continuous case”, Journal of Vibration and Control, 27:1-2 (2021), 43–56 | DOI | MR
[16] Osintsev M., Sobolev V., “Order Reduction of Kalman-Bucy Filter for Systems with Low Measurement Noise. Slow-Fast Systems and Hysteresis: Theory and Applications”, Extended Abstracts Summer 2016, Trends in Mathematics, 10, ed. Korobeinikov A., Birkhauser, Cham, 2018, 47–52 | DOI
[17] Sobolev V., “Thrice Critical Case in Singularly Perturbed Control Problems: Slow-Fast Systems and Hysteresis: Theory and Applications”, Extended Abstracts Summer 2016, Trends in Mathematics, 10, ed. Korobeinikov A., Birkhauser, Cham, 2018, 83–87 | DOI
[18] Tollmien W., Schlichting H., Göortler H., Riegels F., “Ein Gedankenmodell zur kinetischen Theorie der festen Köorper”, Ludwig Prandtl Gesammelte Abhandlungen, ed. Riegels F.W., Springer, Berlin–Heidelberg, 1961, 149–184 | DOI | MR
[19] Preisach F., “Über die magnetische nachwirkung”, Zeitschrift für Physik, 94:5 (1935), 277–302 | DOI
[20] Iwan W., “A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response”, Journal of Applied Mechanics, 33:4 (1966), 893–900 | DOI
[21] Bouc R., “Forced vibrations of mechanical systems with hysteresis”, Proceedings of the fourth Conference on Nonlinear Oscillations (Prague, September 5-9, 1967), 315–321
[22] Bouc R., “Mod‘ele math’ematique d'hyst'er'esis”, Acustica, 24 (1971), 16–25 | Zbl
[23] Lin Y., Cai G., “Random vibration of hysteretic systems”, Nonlinear Dynamics in Engineering Systems. International Union of Theoretical and Applied Mechanics, ed. Schiehlen W., Springer, Berlin–Heidelberg, 1976, 189–196 | DOI | MR
[24] Krasnosel'skii M., Niezgodka M., Pokrovskii A., Systems with Hysteresis, Springer, Berlin–Heidelberg, 2012, 410 pp. | DOI | MR
[25] Visintin A., “Chapter 1 - mathematical models of hysteresis”, The Science of Hysteresis, eds. Bertotti G., Mayergoyz I.D., Academic Press, Oxford, 2006, 1–123 https://www.science.unitn.it/visintin/Elsevier2006.pdf | MR | Zbl
[26] Desch W., Turi J., “The stop operator related to a convex polyhedron”, Journal of Differential Equations, 157:2 (1999), 329–347 | DOI | MR | Zbl
[27] Lang H., Dressler K., Pinnau R., Speckert M., “Notes on Lipschitz estimates for the stop and play operator in plasticity”, Applied Mathematics Letters, 22:4 (2009), 623–627 | DOI | MR | Zbl
[28] Matsuo T., Terada Y., Shimasaki M., “Representation of minor hysteresis loops of a silicon steel sheet using stop and play models”, Physica B: Condensed Matter, 372:1-2 (2006), 25–29 | DOI
[29] Al Janaideh M., Krejch P., “An inversion formula for a Prandtl-Ishlinskii operator with time dependent thresholds”, Physica B: Condensed Matter, 406:8 (2011), 1528–1532 | DOI
[30] Li Z., Zhang X., Ma L., “Development of a combined Prandtl-Ishlinskii-Preisach model”, Sensors and Actuators A: Physical, 304 (2020), 111797 | DOI
[31] Krejch P., Sprekels J., “On a class of multi dimensional Prandtl-Ishlinskii operators”, Physica B: Condensed Matter, 306:1-4 (2001), 185–190 | DOI
[32] Hassani V., Tjahjowidodo T., Do T.N., “A survey on hysteresis modeling, identification and control”, Mechanical Systems and Signal Processing, 49:1-2 (2014), 209–233 | DOI
[33] Dargahi A., Rakheja S., Sedaghati R., “Development of a field dependent Prandtl-Ishlinskii model for magnetorheological elastomers”, Materials Design, 166 (2019), 107608 | DOI
[34] Krejch P., “Reliable solutions to the problem of periodic oscillations of an elastoplastic beam”, International Journal of Non-Linear Mechanics, 37:8 (2002), 1337–1349 | DOI | MR
[35] Ikhouane F., Rodellar J., “On the hysteretic Bouc-Wen model”, Nonlinear Dynamics, 42:1 (2005), 63–78 | DOI | MR | Zbl
[36] Ikhouane F., Rodellar J., “On the hysteretic Bouc-Wen model”, Nonlinear Dynamics, 42:1 (2005), 79–95 | DOI | MR | Zbl
[37] Ikhouane F., Hurtado J.E., Rodellar J., “Variation of the Hysteresis Loop with the Bouc-Wen Model Parameters”, Nonlinear Dynamics, 48:4 (2007), 361–380 | DOI | MR | Zbl
[38] Ismail M., Ikhouane F., Rodellar J., “The Hysteresis Bouc-Wen model, a Survey”, Archives of Computational Methods in Engineering, 16:2 (2009), 161–188 | DOI | Zbl
[39] Semenov M., Karpov E., Tikhomirov S., Meleshenko P., Teplyakova M., “Stabilization of Chaos Via Strong Nonlinearities: The Lorenz-Malkus Wheel Under Coulomb and Hystersis Frictions”, Vibration Engineering and Technology of Machinery, Mechanisms and Machine Science, 95, ed. Balthazar J.M., Springer, Cham, 2021, 3-36 | DOI