Dynamics of the Euler–Bernoully beam with distributed hysteresis properties
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 35-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we present a new mathematical approach to the analysis of a beam with distributed hysteresis properties. These hysteresis characteristics are described by two methods: phenomenological (Bouc–Wen model) and constructive (Prandtl–Ishlinskii model). The equations for beam are developed using the well-known Hamilton method. We investigate the dynamic response of a hysteresis beam under various external loads, including impulse, periodic and seismic loads. The results of numerical simulations show that the hysteresis beam exhibits differently to external influences as compared to the classical Euler-Bernoulli beam. In particular, under the same external loads, the vibration amplitude and energy characteristics of the hysteresis beam are lower than those of the classical one. These findings can be useful for buildings developers in the design of external load resistant buildings and structures
Keywords: hysteresis, Bouc–Wen model, Prandtl–Ishlinskii model, nonlinear dynamics, stability, elastoplasticity.
Mots-clés : Euler–Bernoulli beam
@article{VSGU_2024_30_3_a3,
     author = {E. A. Karpov},
     title = {Dynamics of the {Euler{\textendash}Bernoully} beam with distributed hysteresis properties},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {35--62},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a3/}
}
TY  - JOUR
AU  - E. A. Karpov
TI  - Dynamics of the Euler–Bernoully beam with distributed hysteresis properties
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 35
EP  - 62
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a3/
LA  - ru
ID  - VSGU_2024_30_3_a3
ER  - 
%0 Journal Article
%A E. A. Karpov
%T Dynamics of the Euler–Bernoully beam with distributed hysteresis properties
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 35-62
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a3/
%G ru
%F VSGU_2024_30_3_a3
E. A. Karpov. Dynamics of the Euler–Bernoully beam with distributed hysteresis properties. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 35-62. http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a3/

[1] Timoshenko S., History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures, Dover Civil and Mechanical Engineering Series, Dover Publications, New York, 1983 https://archive.org/details/historyofstrengt0000timo_k8r2 | MR

[2] Elishakoff I., Who developed the so-called Timoshenko beam theory?, Mathematics and Mechanics of Solids, 25:1 (2020), 97–116 | DOI | MR | Zbl

[3] Bauchau O.A., Craig J.I., “Euler - Bernoulli Beam Theory”, Solid Mechanics and Its Applications, Springer Netherlands, Dordrecht, 2009, 173-221 | DOI

[4] Esen I., “Dynamics of size-dependant Timoshenko micro beams subjected to moving loads”, International Journal of Mechanical Sciences, 175 (2020), 105501 | DOI

[5] Krysko A., Awrejcewicz J., Kutepov I., Krysko V., “Stability of curvilinear Euler - Bernoulli beams in temperature fields”, International Journal of Non-Linear Mechanics, 94 (2017), 207–215 | DOI

[6] Semenov M., Reshetova O., Borzunov S., Meleshenko P., “Self-oscillations in a system with hysteresis: the small parameter approach”, The European Physical Journal Special Topics, 230 (2021), 3565–3571 | DOI | MR

[7] Semenov M., Solovyov A., Meleshenko P., Balthazar J., “Nonlinear Damping: From Viscous to Hysteretic Dampers”, Recent Trends in Applied Nonlinear Mechanics and Physics, 2018, 259-275, Springer, Cham | DOI | MR

[8] Semenov M., Solovyov A., Meleshenko P., Reshetova O., “Efficiency of hysteretic damper in oscillating systems”, Mathematical Modelling of Natural Phenomena, 15 (2020), 43 | DOI | MR | Zbl

[9] Semenov M., Reshetova O., Tolkachev A., Solovyov A., Meleshenko P., “Oscillations Under Hysteretic Conditions: From Simple Oscillator to Discrete Sine-Gordon Model”, Topics in Nonlinear Mechanics and Physics, Springer Proceedings in Physics, 228, ed. Belhaq M., Springer, Singapore, 2019, 229-253 | DOI | MR | Zbl

[10] Medvedskii A., Meleshenko P., Nesterov V., Reshetova O., Semenov M., Solovyov A., “Unstable oscillating systems with hysteresis: Problems of stabilization and control”, Journal of Computer and Systems Sciences International, 59 (2020), 533–556 | DOI | MR | Zbl

[11] Semenov M., Borzunov S., Meleshenko P., “Stochastic preisach operator: definition within the design approach”, Nonlinear Dynamics, 101 (2020), 2599–2614 | DOI | Zbl

[12] Semenov M., Borzunov S., Meleshenko P., “A new way to compute the Lyapunov characteristic exponents for non-smooth and discontinues dynamical systems”, Nonlinear Dynamics, 109 (2022), 1805–1821 | DOI

[13] Semenov M., Meleshenko P., Borzunov S., Reshetova O., Barsukov A., “A Simple Model of the Energy Harvester within a Linear and Hysteresis Approach”, Micromachines, 14:2 (2023), 310 | DOI | MR

[14] Borzunov S., “Transformatsiya kolebanii neustoichivoi sistemy v preobrazovatele-nakopitele energii”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya / Vestnik of Samara University. Natural Science Series, 29:2 (2023), 7–18 | DOI | MR

[15] Semenov M., Solovyov A., Meleshenko P., “Stabilization of coupled inverted pendula: From discrete to continuous case”, Journal of Vibration and Control, 27:1-2 (2021), 43–56 | DOI | MR

[16] Osintsev M., Sobolev V., “Order Reduction of Kalman-Bucy Filter for Systems with Low Measurement Noise. Slow-Fast Systems and Hysteresis: Theory and Applications”, Extended Abstracts Summer 2016, Trends in Mathematics, 10, ed. Korobeinikov A., Birkhauser, Cham, 2018, 47–52 | DOI

[17] Sobolev V., “Thrice Critical Case in Singularly Perturbed Control Problems: Slow-Fast Systems and Hysteresis: Theory and Applications”, Extended Abstracts Summer 2016, Trends in Mathematics, 10, ed. Korobeinikov A., Birkhauser, Cham, 2018, 83–87 | DOI

[18] Tollmien W., Schlichting H., Göortler H., Riegels F., “Ein Gedankenmodell zur kinetischen Theorie der festen Köorper”, Ludwig Prandtl Gesammelte Abhandlungen, ed. Riegels F.W., Springer, Berlin–Heidelberg, 1961, 149–184 | DOI | MR

[19] Preisach F., “Über die magnetische nachwirkung”, Zeitschrift für Physik, 94:5 (1935), 277–302 | DOI

[20] Iwan W., “A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response”, Journal of Applied Mechanics, 33:4 (1966), 893–900 | DOI

[21] Bouc R., “Forced vibrations of mechanical systems with hysteresis”, Proceedings of the fourth Conference on Nonlinear Oscillations (Prague, September 5-9, 1967), 315–321

[22] Bouc R., “Mod‘ele math’ematique d'hyst'er'esis”, Acustica, 24 (1971), 16–25 | Zbl

[23] Lin Y., Cai G., “Random vibration of hysteretic systems”, Nonlinear Dynamics in Engineering Systems. International Union of Theoretical and Applied Mechanics, ed. Schiehlen W., Springer, Berlin–Heidelberg, 1976, 189–196 | DOI | MR

[24] Krasnosel'skii M., Niezgodka M., Pokrovskii A., Systems with Hysteresis, Springer, Berlin–Heidelberg, 2012, 410 pp. | DOI | MR

[25] Visintin A., “Chapter 1 - mathematical models of hysteresis”, The Science of Hysteresis, eds. Bertotti G., Mayergoyz I.D., Academic Press, Oxford, 2006, 1–123 https://www.science.unitn.it/visintin/Elsevier2006.pdf | MR | Zbl

[26] Desch W., Turi J., “The stop operator related to a convex polyhedron”, Journal of Differential Equations, 157:2 (1999), 329–347 | DOI | MR | Zbl

[27] Lang H., Dressler K., Pinnau R., Speckert M., “Notes on Lipschitz estimates for the stop and play operator in plasticity”, Applied Mathematics Letters, 22:4 (2009), 623–627 | DOI | MR | Zbl

[28] Matsuo T., Terada Y., Shimasaki M., “Representation of minor hysteresis loops of a silicon steel sheet using stop and play models”, Physica B: Condensed Matter, 372:1-2 (2006), 25–29 | DOI

[29] Al Janaideh M., Krejch P., “An inversion formula for a Prandtl-Ishlinskii operator with time dependent thresholds”, Physica B: Condensed Matter, 406:8 (2011), 1528–1532 | DOI

[30] Li Z., Zhang X., Ma L., “Development of a combined Prandtl-Ishlinskii-Preisach model”, Sensors and Actuators A: Physical, 304 (2020), 111797 | DOI

[31] Krejch P., Sprekels J., “On a class of multi dimensional Prandtl-Ishlinskii operators”, Physica B: Condensed Matter, 306:1-4 (2001), 185–190 | DOI

[32] Hassani V., Tjahjowidodo T., Do T.N., “A survey on hysteresis modeling, identification and control”, Mechanical Systems and Signal Processing, 49:1-2 (2014), 209–233 | DOI

[33] Dargahi A., Rakheja S., Sedaghati R., “Development of a field dependent Prandtl-Ishlinskii model for magnetorheological elastomers”, Materials Design, 166 (2019), 107608 | DOI

[34] Krejch P., “Reliable solutions to the problem of periodic oscillations of an elastoplastic beam”, International Journal of Non-Linear Mechanics, 37:8 (2002), 1337–1349 | DOI | MR

[35] Ikhouane F., Rodellar J., “On the hysteretic Bouc-Wen model”, Nonlinear Dynamics, 42:1 (2005), 63–78 | DOI | MR | Zbl

[36] Ikhouane F., Rodellar J., “On the hysteretic Bouc-Wen model”, Nonlinear Dynamics, 42:1 (2005), 79–95 | DOI | MR | Zbl

[37] Ikhouane F., Hurtado J.E., Rodellar J., “Variation of the Hysteresis Loop with the Bouc-Wen Model Parameters”, Nonlinear Dynamics, 48:4 (2007), 361–380 | DOI | MR | Zbl

[38] Ismail M., Ikhouane F., Rodellar J., “The Hysteresis Bouc-Wen model, a Survey”, Archives of Computational Methods in Engineering, 16:2 (2009), 161–188 | DOI | Zbl

[39] Semenov M., Karpov E., Tikhomirov S., Meleshenko P., Teplyakova M., “Stabilization of Chaos Via Strong Nonlinearities: The Lorenz-Malkus Wheel Under Coulomb and Hystersis Frictions”, Vibration Engineering and Technology of Machinery, Mechanisms and Machine Science, 95, ed. Balthazar J.M., Springer, Cham, 2021, 3-36 | DOI