Solution of certain problem with nonlocal boundary condition for one-dimensional wave equation
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 17-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study a problem with nonlocal boundary condition for one-dimensional wave equation. To prove the solvability of the problem we construct biortogonal basis consisting of eigen- and adjoint-functions of not self adjoint operator.
Keywords: wave equation, boundary problem
Mots-clés : nonlocal condition, biortogonal basis.
@article{VSGU_2024_30_3_a1,
     author = {E. E. Gasanova and L. S. Pulkina},
     title = {Solution of certain problem with nonlocal boundary condition for one-dimensional wave equation},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {17--24},
     year = {2024},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a1/}
}
TY  - JOUR
AU  - E. E. Gasanova
AU  - L. S. Pulkina
TI  - Solution of certain problem with nonlocal boundary condition for one-dimensional wave equation
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 17
EP  - 24
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a1/
LA  - ru
ID  - VSGU_2024_30_3_a1
ER  - 
%0 Journal Article
%A E. E. Gasanova
%A L. S. Pulkina
%T Solution of certain problem with nonlocal boundary condition for one-dimensional wave equation
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 17-24
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a1/
%G ru
%F VSGU_2024_30_3_a1
E. E. Gasanova; L. S. Pulkina. Solution of certain problem with nonlocal boundary condition for one-dimensional wave equation. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 3, pp. 17-24. http://geodesic.mathdoc.fr/item/VSGU_2024_30_3_a1/

[1] Samarskii A.A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differentsialnye uravneniya, 16:11 (1980), 1925–1935 | MR

[2] Ba\v{za}nt Zdeněk P., Jirásek Milan, “Nonlocal Integral Formulation of Plasticity And Damage: Survey of Progress”, Journal of Engineering Mechanics, 128:11 (2002), 1119–1149 | DOI

[3] Steklov V.A., “Zadacha ob okhlazhdenii neodnorodnogo tverdogo sterzhnya”, Soobsch. Kharkovskogo mat. obschestva. Vtoraya seriya, 5:3-4 (1897), 136–181 | MR

[4] Ionkin N.I., “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differentsialnye uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[5] Beilin S.A., “Existence of solutions for one-dimensional wave equations with nonlocal conditions”, Electronic Journal of Differential Equations, 2001:76 (2001), 1–8 https://ejde.math.txstate.edu/Volumes/2001/76/beilin.pdf | MR

[6] Nakhushev A.M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006, 287 pp. https://knigogid.ru/books/1900983-zadachi-so-smescheniem-dlya-uravneniy-v-chastnyh-proizvodnyh/toread

[7] Pulkina L.S., “Nonlocal problems for hyperbolic equations from the viewpoint of strongly regular boundary conditions”, Electronic Journal of Differential Equations, 2020:28 (2020), 1–20 https://ejde.math.txstate.edu/Volumes/2020/28/pulkina.pdf

[8] Ilin V.A., “Neobkhodimye i dostatochnye usloviya bazisnosti podsistemy sobstvennykh i prisoedinennykh funktsii puchka M.V. Keldysha obyknovennykh differentsialnykh operatorov”, Doklady Akademii nauk SSSR, 227:4 (1976), 796–799 | MR | Zbl

[9] Ilin V.A., “O bezuslovnoi bazisnosti na zamknutom intervale sistem sobstvennykh i prisoedinennykh funktsii differentsialnogo operatora 2 poryadka”, Doklady Akademii nauk SSSR, 273:5 (1983), 1048–1053 | MR | Zbl