Solution of the inverse problem of tracer tests interpretation results for oil reservoirs in the presence of low resistance channels
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 2, pp. 81-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Tracer tests of oil reservoirs have become widely used to assess the parameters of low resistance channels, leading to premature increasing of production water cut. The existing analytical methods of their interpretation do not consider the dissipation of the tracer. The article proposes a methodology of tracer tests interpretation in the presence of low resistance channels, which considers the configuration of the tracer slug in the producer. The developed method is based on solving the inverse problem of tracer filtration in the low resistance channel and for the first time considers its dissipation. The formulation of the inverse problem of tracer filtration in the low resistance channel is based on the use of the tracer transfer equation in the channel, the ratio for the reagent flow in the channel and the reservoir, Darcy's law and the relationship of the volume of the tracer slug with its linear size. The algorithm of numerical determination of the tracer dissipation coefficient by solving the optimization problem by the gradient descent is given. The developed algorithm has been tested on the example of the tracer tests interpretation for two producers of one of the Western Siberia fields. The lengths of each channel for the selected wells are determined. It is shown that the error of comparison of calculated and field data does not exceed 7%. It was found that the length of the shortest channel corresponds to the distance between injector and producer, other channels have a longer length and can be formed later.
Keywords: tracer tests, inverse problem, optimization problem, low resistance channels, channel length.
Mots-clés : gradient descent, tracer concentrarion, tracer dissipation
@article{VSGU_2024_30_2_a7,
     author = {K. M. Fedorov and A. Ya. Gilmanov and A. P. Shevelyov and A. A. Izotov and A. V. Kobyashev},
     title = {Solution of the inverse problem of tracer tests interpretation results for oil reservoirs in the presence of low resistance channels},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {81--94},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a7/}
}
TY  - JOUR
AU  - K. M. Fedorov
AU  - A. Ya. Gilmanov
AU  - A. P. Shevelyov
AU  - A. A. Izotov
AU  - A. V. Kobyashev
TI  - Solution of the inverse problem of tracer tests interpretation results for oil reservoirs in the presence of low resistance channels
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 81
EP  - 94
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a7/
LA  - ru
ID  - VSGU_2024_30_2_a7
ER  - 
%0 Journal Article
%A K. M. Fedorov
%A A. Ya. Gilmanov
%A A. P. Shevelyov
%A A. A. Izotov
%A A. V. Kobyashev
%T Solution of the inverse problem of tracer tests interpretation results for oil reservoirs in the presence of low resistance channels
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 81-94
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a7/
%G ru
%F VSGU_2024_30_2_a7
K. M. Fedorov; A. Ya. Gilmanov; A. P. Shevelyov; A. A. Izotov; A. V. Kobyashev. Solution of the inverse problem of tracer tests interpretation results for oil reservoirs in the presence of low resistance channels. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 2, pp. 81-94. http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a7/

[1] Sokolovsky E.V., Solovyov G.B., Trenchikov Yu.I., Indicator methods for studying oil saturated reservoirs, Nedra, M., 1986, 157 pp. (In Russ.)

[2] Shchelkachev V.N., Lapuk B.B., Underground hydraulics, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2001, 736 pp. (In Russ.)

[3] Morozov O.N., Andriyanov M.A., Koloda A.V., Mukhametshin I.R., Nukhaev M.T., Prusakov A.V., “Use of intelligent tracer technology for inflow monitoring in horizontal producers of the Prirazlomnoye oilfield”, Exposition Oil Gas, 2017, no. 7 (60), 24–29

[4] Medvedsky R.I., “Stream theory of oil displacement by water”, Oil and Gas Studies, 1997, no. 6, 69

[5] Bulygin D.V., Nikolaev A.N., Elesin A.V., “Hydrodynamic evaluation of the efficiency of flow deflecting technologies in conditions of formation of man-made filtration channels”, Georesources, 20:3-1 (2018), 172–177 (In Russ.) | DOI

[6] Izotov A.A., Afonin D.G., “The technogenic transformation of productive formations due to the increased discharge pressure during flooding”, Oilfield Engineering, 2021, no. 5 (629), 18–25 (In Russ.) | DOI

[7] Fedorov K.M., Ganopolsky R.M., Gilmanov A.Ya., Shevelev A.P., “Optimization procedure for conformance control”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia / Vestnik of Samara University. Natural Science Series, 29:1 (2023), 74–88 (In Russ.) | DOI

[8] Anderson T.L., Fracture mechanics. Fundamental and application, Publisher Taylor and Francis, New York, 2005, 610 pp. | DOI

[9] Khisamov R.S., Faizullin I.N., Kubarev P.N., Antonov G.P., Galimov I.F., “Tracer tests to study properties of fractured reservoirs developed by water drive with forced fluid withdrawal”, Oil Industry, 2011, no. 7, 36–39

[10] Morales V.A., Ramirez L.K., Garnica S.V., Rueda L.A., Gomez V., Gomez A., Bejarano M.A., Shook G.M., “Inter well tracer test results in the mature oil field La Cira Infantas”, Society of Petroleum Engineers Conference (Tulsa, USA, 14–18 April, 2018), 2018, Paper SPE-190315-MS, 1–22 | DOI | Zbl

[11] Bahamon C.C.T., Mora G., Acosta T.J., Manrique G.A., Quintero D.F., “Understanding flow through interwell tracers”, Society of Petroleum Engineers Conference (San Jose, USA, 23–26 April, 2019), 2019, Paper SPE-195251-MS, 1–20 | DOI

[12] RD 39-0147428. Methodological guidance on the technology of conducting tracer tests and interpreting their results to regulate and control the process of waterflooding oil deposits, Ministerstvo neftyanoi promyshlennosti SSSR, M., 1988, 87 pp. (In Russ.)

[13] Zemtsov Yu.V., Baranov A.V., Gordeev A.O., “Review of chemical EOR methods used in Western Siberia and the effectiveness of their use in various geological and physical conditions”, Neft. Gas. Novacii, 2015, no. 7, 11–21 (In Russ.)

[14] Ruchkin A.A., Yagafarov A.K., Optimization of the use of conformance control technologies at the Samotlor field, Vektor Buk, Tyumen, 2005, 148 pp.

[15] Kireev T.F., Bulgakova G.T., “Interpretation of interwell tracer tests using discrete fracture model”, Computational Continuum Mechanics, 11:3 (2018), 252–262 (In Russ.) | DOI

[16] Fedorov K.M., Gilmanov A.Ya., Shevelev A.P., Izotov A.A., Kobyashev A.V., “New interpretation technique for tracer well tests”, Proceedings of higher educational establishments. Geology and Exploration, 65:6 (2023), 41–52 (In Russ.) | DOI

[17] Doorwar S., Tagavifar M., Dwarakanath V., “A 1D analytical solution to determine residual oil saturations from single-well chemical tracer test”, Society of Petroleum Engineers Conference (Tulsa, USA, 31 August–4 September, 2020), 2020, Paper SPE-200420-MS, 1–16 | DOI

[18] Shen T., Moghanloo R.G., Tian W., “Decoupling of channeling and dispersion effects by use of multiwell tracer test”, SPE Reservoir Evaluation and Engineering, 21:01 (2017), 54–72 | DOI

[19] Samaniego V.F., Pulido B.H., Rivera R.J., Camacho V.R., Perez R.V.H., Martinez G.B., “A tracer injection-test approach to reservoir characterization: theory and practice”, International Petroleum Technology Conference (Doha, Qatar, 21–23 November 2005), 2005, Paper IPTC 11038, 1–13 | DOI

[20] Eldaoushy A.S., Al-Ajmi M., Ashkanani F., “Utilization of interwell water tracer to study subsurface flow of the injected water and optimize waterflood in Mauddud carbonate reservoir, Raudjatain Field, North Kuwait”, Society of Petroleum Engineers Conference (Mishref, Kuwait, 11–14 October, 2015), 2015, Paper SPE-175200-MS, 1–12 | DOI

[21] Economides M., Oligney R., Valko P., Unified Fracture Design, PetroAl'yans Servisis Kompani Limited, M., 2004, 316 pp. (In Russ.)

[22] Gil'manov A.Ya., Fedorov K.M., Shevelev A.P., “Problem of blocking a technogenic fracture in the reservoir using a suspension mixture”, Fluid Dynamics, 57:6 (2022), 720–728 (In English; original in Russian) | DOI | DOI | Zbl

[23] Barenblatt G.I., Entov V.M., Ryzhik V.M., Movement of liquids and gases in natural formations, Nedra, M., 1984, 211 pp. (In Russ.)

[24] Entov V.M., Zazovsky A.F., Hydrodynamics of enhanced oil recovery processes, Nedra, M., 1989, 231 pp. (In Russ.)

[25] Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M., Numerical methods, Laboratoriya znanii, M., 2020, 636 pp. (In Russ.) | MR