Mots-clés : singular perturbations, canards, bifurcation
@article{VSGU_2024_30_2_a2,
author = {O. S. Kipkaeva},
title = {On one scenario for changing the stability of invariant manifolds of singularly perturbed systems},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {20--29},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a2/}
}
TY - JOUR AU - O. S. Kipkaeva TI - On one scenario for changing the stability of invariant manifolds of singularly perturbed systems JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2024 SP - 20 EP - 29 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a2/ LA - ru ID - VSGU_2024_30_2_a2 ER -
%0 Journal Article %A O. S. Kipkaeva %T On one scenario for changing the stability of invariant manifolds of singularly perturbed systems %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2024 %P 20-29 %V 30 %N 2 %U http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a2/ %G ru %F VSGU_2024_30_2_a2
O. S. Kipkaeva. On one scenario for changing the stability of invariant manifolds of singularly perturbed systems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 2, pp. 20-29. http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a2/
[1] Strygin V.V., Sobolev V.A., Decomposition of motions by the integral manifolds method, Nauka, M., 256 pp. (In Russ.) | MR
[2] Shchepakina E., Sobolev V., Mortell M.P., Singular Perturbations. Introduction to system order reduction methods with applications, Springer, Cham-Berlin-Heidelber-London, 2014, 222 pp. | DOI | MR | Zbl
[3] Sobolev V.A., Shchepakina E.A., Reduction of models and critical phenomena in macrokinetics, FIZMATLIT, M., 2010, 320 pp. (In Russ.)
[4] Arnold V.I. et al., Bifurcation Theory, v. 5, VINITI, M., 1986, 218 pp. (In Russ.)
[5] Shchepakina E.A., “Two Forms of Stability Change for Integral Manifolds”, Differential Equations, 40:5 (2004), 766–769 (In English; original in Russian) | DOI | MR | Zbl
[6] Shchepakina E., Sobolev V., “Integral manifolds, canards and black swans”, Nonlinear Analysis: Theory, Methods Applications, 44 (2001), 897–908 | DOI | MR | Zbl
[7] Shchepakina E.A., “Stable/unstable slow integral manifolds in critical cases”, Journal of Physics: Conference Series, 811:1 (2017), 012016 | DOI | MR
[8] Benoit E., Callot J. L., Diener F., Diener M., “Chasse au canard”, Collectanea Mathematica, 31–32 (1981), 37–119 https://www.researchgate.net/publication/265548510_Chasse_au_canard | MR
[9] Gorelov G.N., Sobolev V.A. Mathematical modeling of critical phenomena in thermal explosion theory, Combustion and Flame, 87:2 (1991), 203–210 | DOI
[10] Gorelov G.N., Sobolev V.A., “Duck-trajectories in a thermal explosion problem”, Applied Mathematics Letters, 5:6 (1992), 3–6 | DOI | MR | Zbl
[11] Sobolev V.A., Shchepakina E.A., “Duck trajectories in a problem of combustion theory”, Differential Equations, 32:9 (1996), 1177–1186 | MR | Zbl
[12] Shchepakina E.A., “Black swans and canards in self-ignition problem”, Nonlinear Analysis: Real World Applications, 4:1 (2003), 45–50 | DOI | MR | Zbl
[13] Shchepakina E., Sobolev V., “Black swans and canards in laser and combustion models”, Singular perturbations and hysteresis, eds. M.P. Mortell, R.E. O'Malley, A. Pokrovskii, V.A. Sobolev, SIAM, Philadelphia, 2005, 207–255 | DOI | MR | Zbl
[14] Shchepakina E., “Canards and black swans in model of a 3-D autocatalator”, Journal of Physics: Conference Series, 22:1 (2005), 194–207 | DOI
[15] Shchepakina E., Korotkova O., “Condition for canard explosion in a semiconductor optical amplifier”, Journal of the Optical Society of America B: Optical Physics, 28:8 (2011), 1988–1993 | DOI | MR
[16] Shchepakina E., Korotkova O. Canard explosion in chemical and optical systems, Discrete and Continuous Dynamical Systems — Series B, 18:2 (2013), 495–512 | DOI | MR | Zbl
[17] Shchepakina E., Sobolev V., “Invariant surfaces of variable stability”, Journal of Physics: Conference Series, 727:1 (2016), 012016 pp. | DOI | MR | Zbl
[18] Neustadt A.I., “Asymptotic investigation of the loss of stability by an equilibrium as a pair of eigenvalues slowly cross the imaginary axis”, Uspekhi Matematicheskikh Nauk, 40:5 (1985), 190–191 (In English; original in Russian)
[19] Neustadt A.I., “Prolongation of the loss of stability loss in the case of dynamic bifurcations”, Differentsial'nye Uravneniya, 24:2, 226–233 | MR | MR
[20] Shishkova M.A. Examination of a system of differential equations with a small parameter in the highest derivatives, Doklady Akademii Nauk SSSR, 209:3 (1973), 576–579 (In Russ.) | MR | Zbl
[21] Shchetinina E.V., “A problem on the change of stability of integral manifolds”, Izvestija RAEN. Matematika. Matematicheskoe modelirovanie. Informatika i upravlenie, 3:3 (1999), 129–134 (In Russ.)
[22] Schneider K.R., Shchetinina E.V., Sobolev V.A., “Control of integral manifolds loosing their attractivity in time”, Journal of Mathematical Analysis and Applications, 315:2 (2006), 740–757 | DOI | MR | Zbl