Mots-clés : singular perturbations, combustion, canards.
@article{VSGU_2024_30_2_a1,
author = {E. S. Dolgova},
title = {Asymptotics of critical conditions in one combustion model},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {12--19},
year = {2024},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a1/}
}
E. S. Dolgova. Asymptotics of critical conditions in one combustion model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 2, pp. 12-19. http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a1/
[1] Gorelov G.N., Sobolev V.A., “Mathematical modeling of critical phenomena in thermal explosion theory”, Combustion and Flame, 87:2 (1991), 203–210 | DOI
[2] Gorelov G.N., Sobolev V.A., “Duck-trajectories in a thermal explosion problem”, Applied Mathematics Letters, 5:6 (1992), 3–6 | DOI | MR | Zbl
[3] Sobolev V.A., Shchepakina E.A., “Self-ignition of dusty media”, Combustion, Explosion and Shock Waves, 29:3 (1993), 378–381 | DOI
[4] Sobolev V.A., Shchepakina E.A., “Duck-trajectories in a problem of combustion theory”, Differential equations, 32:9 (1996), 1177–1186 (In English; original in Russian) | MR | Zbl
[5] Sobolev V.A., Shchepakina E.A., Model reduction and critical phenomena in macrokinetics, FIZMATLIT, M., 2010, 320 pp. (In Russ.)
[6] Shchepakina E., “Unstable invariant manifolds in a control problem of the combustion process of a gas mixture”, 2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems, Pyatnitskiy's Conference (Moscow, Russian Federation, 2022), IEEE, 1–4 | DOI | MR
[7] Sobolev V., Shchepakina E., “Critical conditions of a thermal explosion in the case of autocatalytic combustion with account reagent and oxidant consumption”, 2023 16th International Conference Management of large-scale system development, MLSD (Moscow, Russian Federation, 2023), IEEE, 2023, 1–4 | DOI
[8] Emanuel N.M., Knorre D.G., Course of chemical kinetics, Vysshaya shkola, M., 1984, 463 pp. (In Russ.)
[9] Shchepakina E., Sobolev V., Mortell V., “Singular Perturbations. Introduction to System order Reduction Methods with Applications”, Springer Lecture Notes in Mathematics, 2114, 2014, 212 | DOI | MR | Zbl
[10] Shchepakina E. Black swans and canards in self-ignition problem, Nonlinear Analysis: Real Word Applications, 4:1 (2003), 45–50 | DOI | MR | Zbl
[11] Shchepakina E., Sobolev V., “Black swans and canards in laser and combustion models”, Singular perturbations and hysteresis, eds. M.P. Mortell, R.E. O'Malley, A. Pokrovskii, V.A. Sobolev, SIAM, Philadelphia, 2005, 207–255 | DOI | MR | Zbl
[12] Benoit E., Callot J.L., Diener F., Diener M., “Chasse au canard”, Collectanea Mathematica, 31–32 (1981), 37–119 https://www.researchgate.net/publication/265548510_Chasse_au_canard | MR
[13] Shchepakina E., Sobolev V., “Integral manifolds, canards and black swans”, Nonlinear Analysis, Theory, Methods and Applications, 44:7 (2001), 897–908 | DOI | MR | Zbl
[14] Shchepakina E., Sobolev V., “Invariant surfaces of variable stability”, Journal of Physics: Conference Series, 727:1 (2016), 012016 | DOI | MR