Asymptotics of critical conditions in one combustion model
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 2, pp. 12-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to solving the problem of critical conditions for an autocatalytic combustion model, taking into account the consumption of reagent and oxidizer. By use the methods of geometric theory of singular perturbations, the analysis of the mathematical model of this process show that there are two main types of combustion modes: the slow combustion mode and the thermal explosion mode. The critical mode is intermediate between them. In the paper, the condition of the critical regime is obtained in the form of an asymptotic representation of the corresponding value of the system parameter reflecting the heat loss from the reaction phase.
Keywords: mathematical modeling, dynamic systems, invariant manifolds, stability, asymptotic methods, critical phenomena
Mots-clés : singular perturbations, combustion, canards.
@article{VSGU_2024_30_2_a1,
     author = {E. S. Dolgova},
     title = {Asymptotics of critical conditions in one combustion model},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {12--19},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a1/}
}
TY  - JOUR
AU  - E. S. Dolgova
TI  - Asymptotics of critical conditions in one combustion model
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 12
EP  - 19
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a1/
LA  - ru
ID  - VSGU_2024_30_2_a1
ER  - 
%0 Journal Article
%A E. S. Dolgova
%T Asymptotics of critical conditions in one combustion model
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 12-19
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a1/
%G ru
%F VSGU_2024_30_2_a1
E. S. Dolgova. Asymptotics of critical conditions in one combustion model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 2, pp. 12-19. http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a1/

[1] Gorelov G.N., Sobolev V.A., “Mathematical modeling of critical phenomena in thermal explosion theory”, Combustion and Flame, 87:2 (1991), 203–210 | DOI

[2] Gorelov G.N., Sobolev V.A., “Duck-trajectories in a thermal explosion problem”, Applied Mathematics Letters, 5:6 (1992), 3–6 | DOI | MR | Zbl

[3] Sobolev V.A., Shchepakina E.A., “Self-ignition of dusty media”, Combustion, Explosion and Shock Waves, 29:3 (1993), 378–381 | DOI

[4] Sobolev V.A., Shchepakina E.A., “Duck-trajectories in a problem of combustion theory”, Differential equations, 32:9 (1996), 1177–1186 (In English; original in Russian) | MR | Zbl

[5] Sobolev V.A., Shchepakina E.A., Model reduction and critical phenomena in macrokinetics, FIZMATLIT, M., 2010, 320 pp. (In Russ.)

[6] Shchepakina E., “Unstable invariant manifolds in a control problem of the combustion process of a gas mixture”, 2022 16th International Conference on Stability and Oscillations of Nonlinear Control Systems, Pyatnitskiy's Conference (Moscow, Russian Federation, 2022), IEEE, 1–4 | DOI | MR

[7] Sobolev V., Shchepakina E., “Critical conditions of a thermal explosion in the case of autocatalytic combustion with account reagent and oxidant consumption”, 2023 16th International Conference Management of large-scale system development, MLSD (Moscow, Russian Federation, 2023), IEEE, 2023, 1–4 | DOI

[8] Emanuel N.M., Knorre D.G., Course of chemical kinetics, Vysshaya shkola, M., 1984, 463 pp. (In Russ.)

[9] Shchepakina E., Sobolev V., Mortell V., “Singular Perturbations. Introduction to System order Reduction Methods with Applications”, Springer Lecture Notes in Mathematics, 2114, 2014, 212 | DOI | MR | Zbl

[10] Shchepakina E. Black swans and canards in self-ignition problem, Nonlinear Analysis: Real Word Applications, 4:1 (2003), 45–50 | DOI | MR | Zbl

[11] Shchepakina E., Sobolev V., “Black swans and canards in laser and combustion models”, Singular perturbations and hysteresis, eds. M.P. Mortell, R.E. O'Malley, A. Pokrovskii, V.A. Sobolev, SIAM, Philadelphia, 2005, 207–255 | DOI | MR | Zbl

[12] Benoit E., Callot J.L., Diener F., Diener M., “Chasse au canard”, Collectanea Mathematica, 31–32 (1981), 37–119 https://www.researchgate.net/publication/265548510_Chasse_au_canard | MR

[13] Shchepakina E., Sobolev V., “Integral manifolds, canards and black swans”, Nonlinear Analysis, Theory, Methods and Applications, 44:7 (2001), 897–908 | DOI | MR | Zbl

[14] Shchepakina E., Sobolev V., “Invariant surfaces of variable stability”, Journal of Physics: Conference Series, 727:1 (2016), 012016 | DOI | MR