On a de Branges space related to the Riemann zeta function
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 2, pp. 7-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a recent article by V.V. Kapustin a de Branges space, whose element is an expression containing the Riemann xi function, was constructed; the canonical system with a diagonal Hamiltonian and the generalized Fourier transform corresponding to the space were found. In this article we present a similar de Branges space with some preferred modifications and we provide formulas related to it; we also write down the Hamiltonian and the generalized Fourier transform.
Keywords: de Branges space, Riemann xi function, canonical system with diagonal Hamiltonian, generalized Fourier transform.
@article{VSGU_2024_30_2_a0,
     author = {S. A. Badonova},
     title = {On a de {Branges} space related to the {Riemann} zeta function},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {7--11},
     year = {2024},
     volume = {30},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a0/}
}
TY  - JOUR
AU  - S. A. Badonova
TI  - On a de Branges space related to the Riemann zeta function
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 7
EP  - 11
VL  - 30
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a0/
LA  - ru
ID  - VSGU_2024_30_2_a0
ER  - 
%0 Journal Article
%A S. A. Badonova
%T On a de Branges space related to the Riemann zeta function
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 7-11
%V 30
%N 2
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a0/
%G ru
%F VSGU_2024_30_2_a0
S. A. Badonova. On a de Branges space related to the Riemann zeta function. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 2, pp. 7-11. http://geodesic.mathdoc.fr/item/VSGU_2024_30_2_a0/

[1] Kapustin V.V., “The set of zeros of the Riemann zeta function as the point spectrum of an operator”, St. Petersburg Mathematical Journal, 33:4 (2022), 661–673 (In English; original in Russian) | DOI | MR | MR | Zbl

[2] Romanov R., Canonical systems and de Branges spaces, arXiv: 1408.6022v1