Mots-clés : Gauss curves
@article{VSGU_2024_30_1_a9,
author = {D. N. Chernyshev and V. S. Klochkova and A. S. Lelekov},
title = {Model of decomposition of the native absorption spectrum of {Porphyridium} purpureum culture},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {122--131},
year = {2024},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a9/}
}
TY - JOUR AU - D. N. Chernyshev AU - V. S. Klochkova AU - A. S. Lelekov TI - Model of decomposition of the native absorption spectrum of Porphyridium purpureum culture JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2024 SP - 122 EP - 131 VL - 30 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a9/ LA - ru ID - VSGU_2024_30_1_a9 ER -
%0 Journal Article %A D. N. Chernyshev %A V. S. Klochkova %A A. S. Lelekov %T Model of decomposition of the native absorption spectrum of Porphyridium purpureum culture %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2024 %P 122-131 %V 30 %N 1 %U http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a9/ %G ru %F VSGU_2024_30_1_a9
D. N. Chernyshev; V. S. Klochkova; A. S. Lelekov. Model of decomposition of the native absorption spectrum of Porphyridium purpureum culture. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 1, pp. 122-131. http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a9/
[1] Akimoto M., Shirai A., Ohtaguchi K., Koide K., “Carbon dioxide fixation and polyunsaturated fatty acid production by the red alga Porphyridium cruentum”, Applied Biochemistry and Biotechnology, 73 (1998), 269–278 | DOI
[2] Gantt E., Lipschultz C.A., “Phycobilisomes of Porphyridium cruentum. Pigment analysis”, Biochemistry, 13 (1974), 2960–2966 | DOI
[3] Bidigare R.R. et al., “In-vivo absorption properties of algal pigments”, Ocean Optics X, Proceedings SPIE, 1302, 1990, 290–302 | DOI
[4] Kopytov Yu.P., Lelekov A.S., Gevorgiz R.G., Nekhoroshev M.V., Novikova T.M., “Method of complex analysis of biochemical composition of microalgae”, Algologia, 25:1 (2015), 35–40 (In Russ.) | DOI
[5] Poojary M.M., Barba F.J., Aliakbarian B., Donsi F., Pataro G., Dias D.A., Juliano P., “Innovative alternative technologies to extract carotenoids from microalgae and seaweeds”, Marine Drugs, 14:11 (2016), 214 | DOI
[6] Kadam S.U., Tiwari B.K., O'Donnell C.P., “Application of Novel Extraction Technologies for Bioactives from Marine Algae”, Journal of Agricultural and Food Chemistry, 61:20 (2013), 4667–4675 | DOI
[7] Kupper H., Seibert S., Parameswaran A., “Fast, sensitive, and inexpensive alternative to analytical pigment HPLC: quantification of chlorophylls and carotenoids in crude extracts by fitting with Gauss peak spectra”, Analytical Chemistry, 79:20 (2007), 7611–7627 | DOI
[8] Trenkenshu R.P., Terskov I.A., Sidko F.Ya., “Dense cultures of marine algae”, Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR. Seriya biologicheskikh nauk, 5:1 (1981), 75–82
[9] Trenkenshu R.P., Lelekov A.S., Borovkov A.B., Novikova T.M., “Unified installation for microalgae laboratory studies”, Issues of modern algology, 2017, no. 1(13), 28 (In Russ.)
[10] Stadnichuk I.N., Phycobiliproteins, VINITI, M., 1990, 193 pp. (In Russ.)
[11] Gevorgiz R.G., Quantitative determination of mass fraction of chlorophyll a in dry biomass of Spirulina (Arthrospira) platensis North. Geitl, textbook, Sevastopol, 2017, 11 pp. (In Russ.)
[12] Gevorgiz R.G., Nekhoroshev M.V., Quantitative determination of the mass fraction of total carotenoids in the dry biomass of Spirulina (Arthrospira) platensis North. Geitl, Preprint, educational and methodological manual, RAS, IMBI, Sevastopol, 2017, 12 pp. (In Russ.)
[13] Merzlyak M.N., Naqvi K.R., “On recording the true absorption and the scattering spectrum of a turbid sample: Application to cell suspensions of the cyanobacterium Anabaena variabilis”, Journal of Photochemistry and Photobiology B: Biology, 58 (2000), 123–129 | DOI
[14] Klochkova V.S., Lelekov A.S., Gudvilovich I.N., “Dynamics of the concentration of chlorophyll a and B-phycoerythrin concentration in culture Porphyridium purpureum in conditions of light and carbon limitation”, Modern Trends in Biological Physics and Chemistry, 7:4 (2022), 534–540 (In Russ.) | DOI
[15] Guliaev B.A., Litvin F.F., “1st and 2nd derivatives of the absorption spectrum of chlorophyll and accompanying pigments in the cells of higher plants and algae at 20 $^\circ$ C”, Biofizika, 15:4 (1970), 670–680 (In Russ.)
[16] Hoepffner N., Sathyendranath S., “Effect of pigment composition on absorption properties of phytoplankton”, Marine Ecology Progress Series, 73:1 (1991), 11–23 https://fliphtml5.com/pqff/hlfk | DOI
[17] Chernyshev D.N., Klochkova V.S., Lelekov A.S., “Separation of the absorption spectrum of Porphyridium purpureum (Bory) Ross. in the red area”, Issues of modern algology, 2022, no. 1(28), 25–34 | DOI
[18] Jeffrey S.W., Mantoura R.F.C., Wright S.W., Phytoplankton pigments in oceanography: guidelines to modern methods, UNESCO, 1997, 661 pp. https://typeset.io/papers/phytoplankton-pigments-in-oceanography-guidelines-to-modern-1nz2k808fz?ysclid=lsx319hon763087631
[19] Myers J., Graham J.R., Wang R.T., “On spectral control of pigmentation in Anacystis nidulans (Cyanophyceae)”, Journal of Phycology, 14:4 (1978), 513–518 | DOI
[20] Arnon D.I., McSwain B.D., Tsujimoto H.Y., Wada K., “Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin”, Bioch. Biophys. Acta, 357:2 (1974), 231–245 | DOI