Dynamics of entangled Greenberger — Horne — Zeilinger states in three qubits thermal Tavis — Cummings model
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 1, pp. 82-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we investigated the dynamics of systems of two and three identical qubits interacting resonantly with a selected mode of a thermal field of a lossless resonator. We found solutions of the quantum time-dependent Liouville equation for various three- and two-qubit entangled states of qubits. Based on these solutions, we calculated the criterion of the qubit entanglement — fidelity. The results of numerical calculations of the fidelity showed that increasing the average number of photons in a mode leads to a decrease in the maximum degree of entanglement. It is shown that the two-qubit entangled state is more stable with respect to external noise than the three-qubit entangled Greenberger — Horne — Zeilinger states ($GHZ$). Moreover, a genuine entangled $GHZ$-state is more stable to noise than a $GHZ$-like entangled state.
Keywords: qubits, three qubits, Greenberger –– Horne –– Zeilinger states, resonance interaction, cavity, thermal field, fidelity.
Mots-clés : entanglement
@article{VSGU_2024_30_1_a6,
     author = {A. R. Bagrov and E. K. Bashkirov},
     title = {Dynamics of entangled {Greenberger} {\textemdash} {Horne} {\textemdash} {Zeilinger} states in three qubits thermal {Tavis} {\textemdash} {Cummings} model},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {82--95},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a6/}
}
TY  - JOUR
AU  - A. R. Bagrov
AU  - E. K. Bashkirov
TI  - Dynamics of entangled Greenberger — Horne — Zeilinger states in three qubits thermal Tavis — Cummings model
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 82
EP  - 95
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a6/
LA  - ru
ID  - VSGU_2024_30_1_a6
ER  - 
%0 Journal Article
%A A. R. Bagrov
%A E. K. Bashkirov
%T Dynamics of entangled Greenberger — Horne — Zeilinger states in three qubits thermal Tavis — Cummings model
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 82-95
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a6/
%G ru
%F VSGU_2024_30_1_a6
A. R. Bagrov; E. K. Bashkirov. Dynamics of entangled Greenberger — Horne — Zeilinger states in three qubits thermal Tavis — Cummings model. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 1, pp. 82-95. http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a6/

[1] Gu X., Kockum A.F., Miranowicz A., Liu Y.X., Nori F., “Microwave photonics with superconducting quantum circuits”, Physics Reports, 718–719 (2017), 1–102 | DOI | MR | Zbl

[2] Wendin G., “Quantum information processing with super-conducting circuits: a review”, Reports on Progress in Physics, 80:10 (2017), 106001 | DOI | MR

[3] Kjaergaard M., Schwartz M.E., Braumüller J., Krantz P., Wang J.-I., Gustavsson S., Oliver W.D., “Superconducting Qubits: Current State of Play”, Annual Reviews of Condensed Matter Physics, 11 (2020), 369–395 | DOI

[4] Huang H.-L., Wu D., Fan D., Zhu X., “Superconducting quantum computing: a review”, Science China Information Sciences, 63 (2020), 180501 | DOI | MR

[5] Terhal B.M., “Quantum error correction for quantum memories”, Reviews of Modern Physics, 87:2 (2015), 307–346 | DOI | MR

[6] Kimble H.J., “The quantum internet”, Nature, 453 (2008), 1023–1030 | DOI

[7] Pezz$\acute{e}$ L., Smerzi A., Oberthaler M.K., Schmied R., Treutlein P., “Quantum metrology with nonclassical states of atomic ensembles”, Reviews of Modern Physics, 90 (2018), 035005 | DOI | MR

[8] Zou Y.-Q. et al., “Beating the classical precision limit with spin-1 dicke states of more than 10,000 atoms”, Proceedings of the National Academy of Sciences, 115 (2018), 6381–6385 | DOI

[9] Wang X.-L. et al., “18-qubit entanglement with six photons' three degrees of freedom”, Physical Review Letters, 120:26 (2018), 260502 | DOI

[10] Zhong H.-S. et al., “12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric downconversion”, Physical Review Letters, 121:25 (2018), 250505 | DOI

[11] Seevinck M., Gühne O., “Separability criteria for genuine multiparticle entanglement”, New Journal of Physics, 12 (2010), 053002 | DOI | Zbl

[12] Pereira L., Zambrano L., Delgado A., “Scalable estimation of pure multi-qubit states”, Npj Quantum Information, 8:57 (2022), 1–12 | DOI

[13] Zhahir A.A., Mohd S.M., Shuhud M.I.M., Idrus B., Zainuddin H., Jan N.M., Wahiddin M., “Entanglement Quantification and Classification: A Systematic Literature Review”, International Journal of Advanced Computer Science and Applications, 13:5 (2022), 218–225 | DOI

[14] Dur W., Cirac J.I., “Classification of multiqubit mixed states: Separability and distillability properties”, Physical Review A: Atomic, molecular, and optical physics, 61:4 (2000), 042314 | DOI | MR

[15] Dur W., Cirac J.I., Vidal G., “Three qubits can be entangled in two inequivalent ways”, Physical Review A: Atomic, molecular, and optical physics, 62:6 (2000), 062314 | DOI | MR

[16] Acin A., Bruß D., Lewenstein M., Sanpera A., “Classification of Mixed Three-Qubit States”, Physical Review Letters, 87:4 (2000), 040401 | DOI | MR

[17] Garcia-Alcaine G., Sabin C., “A classification of entanglement in three-qubit systems”, The European Physical Journal D, 48 (2008), 040401, 435–442 | DOI | MR

[18] Siti Munirah Mohd S.M., Idrus B., Zainuddin H., Mukhtar M., “Entanglement Classification for a Three-qubit System using Special Unitary Groups”, International Journal of Advanced Computer Science and Applications, 10:7 (2019), 374–379 | DOI

[19] Akbari-Kourbolagh Y., “Entanglement criteria for the three-qubit states”, International Journal of Quantum Information, 15:7 (2017), 1750049 | DOI | MR | Zbl

[20] Gong M. et al., “Genuine 12-qubit entanglement on a superconducting quantum processor”, Physical Review Letters, 122:11 (2019), 110501 | DOI

[21] Song C. et al., “10-qubit entanglement and parallel logic operations with a superconducting circuit”, Physical Review Letters, 119:18 (2017), 180511 | DOI

[22] Wei K.X. et al., “Verifying multipartite entangled GHZ states via multiple quantum coherences”, Physical Review A, 101:3 (2020), 032343 | DOI

[23] Song C. et al., “Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits”, Science, 365:6453 (2019), 574–577 | DOI | MR

[24] Leibfried D. et al., “Toward heisenberg-limited spectroscopy with multiparticle entangled states”, Science, 304:5676 (2004), 1476–1478 | DOI

[25] Roos C.F. et al., “Control and measurement of three-qubit entangled states”, Science, 304:5676 (2004), 1478–1480 | DOI

[26] Monz T. et al., “14-qubit entanglement: creation and coherence”, Physical Review Letters, 106:13 (2011), 130506 | DOI

[27] Omran A. et al., “Generation and manipulation of Schrödinger cat states in Rydberg atom arrays”, Science, 365:6453 (2019), 570–574 | DOI | MR

[28] Lu C.-Y. et al., “Experimental entanglement of six photons in graph states”, Nature Physics, 3 (2007), 91–95 | DOI | MR

[29] Wang X.-L. et al., “18-qubit entanglement with six photons' three degrees of freedom”, Physical Review Letters, 120:26 (2018), 260502 | DOI

[30] Zhong H.-S. et al., “12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric downconversion”, Physical Review Letters, 121:25 (2018), 250505 | DOI

[31] Neeley M., “Generation of three-qubit entangled states using superconducting phase qubits”, Nature, 467 (2010), 570–573 | DOI

[32] Gong M. et al., “Genuine 12-qubit entanglement on a superconducting quantum processor”, Physical Review Letters, 122:11 (2019), 110501 | DOI

[33] Song C. et al., “10-qubit entanglement and parallel logic operations with a superconducting circuit”, Physical Review Letters, 119:18 (2017), 180511 | DOI

[34] Li D., Cheng M., Li X., Li S., “A relation among tangle, 3-tangle, and von Neumann entropy of entanglement for three qubits”, Quantum Information Processing, 22 (2023), 14 | DOI | MR | Zbl

[35] Yu T., Eberly J. H., “Sudden death of entanglement”, Science, 323:5914 (2009), 598–601 | DOI | MR | Zbl

[36] Wang F. et al., “Observation of entanglement sudden death and rebirth by controlling a solid-state spin bath”, Physical Review B, 98:6 (2018), 064306 | DOI

[37] Sun G., Zhou Z., Mao B., Wen X., Wu P., Han S., “Entanglement dynamics of a superconducting phase qubit coupled to a two-level system”, Physical Review B, 86:6 (2012), 064502 | DOI

[38] Salles A., de Melo F., Almeida M. P., Hor-Meyll M., Walborn S.P., Souto Ribeiro P. H., Davidovich L., “Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment”, Physical Review A, 78:2 (2008), 022322 | DOI

[39] Bagrov A.R., Bashkirov E.K., “Sudden death of entanglement in a thermal three-qubut Tavis-Cummings model”, Proceedings of the 9th IEEE International Conference on Information Technology and Nanotechnology, 2023, 23240901 | DOI

[40] Jozsa R., “Fidelity for Mixed Quantum States”, Journal of Modern Optics, 41:12 (1994), 2315–2323 | DOI | MR | Zbl