Some auxiliary estimates for solutions to non-uniformly degenerate second-order elliptic equations
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 1, pp. 23-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a class of second order elliptic equations in divergence form with non-uniform exponential degeneracy. The method used is based on the fact that the degeneracy rates of the eigenvalues of the matrix $|| a_{ij}(x)||$ (function $\lambda_i(x)$) are not the functions of unusual norm $|x|$, but of some anisotropic distance $| x|_{{a}^{-}}$. We assume that the Dirichlet problem for such equations is solvable in the classical sense for every continuous boundary function in any normal domain $\Omega$. Estimates for the weak solutions of Dirichlet problem near the boundary point are obtained, and Green's functions for second order non-uniformly degenerate elliptic equations are constructed.
Keywords: uniform ellipticity, non-uniform degeneration spaces, fundamental solution.
@article{VSGU_2024_30_1_a1,
     author = {S. T. Huseynov and M. J. Aliyev},
     title = {Some auxiliary estimates for solutions to non-uniformly degenerate second-order elliptic equations},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {23--30},
     year = {2024},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a1/}
}
TY  - JOUR
AU  - S. T. Huseynov
AU  - M. J. Aliyev
TI  - Some auxiliary estimates for solutions to non-uniformly degenerate second-order elliptic equations
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2024
SP  - 23
EP  - 30
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a1/
LA  - ru
ID  - VSGU_2024_30_1_a1
ER  - 
%0 Journal Article
%A S. T. Huseynov
%A M. J. Aliyev
%T Some auxiliary estimates for solutions to non-uniformly degenerate second-order elliptic equations
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2024
%P 23-30
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a1/
%G ru
%F VSGU_2024_30_1_a1
S. T. Huseynov; M. J. Aliyev. Some auxiliary estimates for solutions to non-uniformly degenerate second-order elliptic equations. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 30 (2024) no. 1, pp. 23-30. http://geodesic.mathdoc.fr/item/VSGU_2024_30_1_a1/

[1] Mazya V.G., “Regularity at the boundary of solutions of elliptic equations and conformal mapping”, Doklady Akademii Nauk SSSR, 152:6 (1963), 1297–1300 (In Russ.) | Zbl

[2] Mazya V.G., “On modulus of continuity of the solution to the Dirichlet problem near regular boundary”, Problems of Mathematical Analysis, L., 1966, 45–58 (In Russ.) | Zbl

[3] De Giorgi E., “Sulla differenziabilita e l'analiticita delle estremali degli intergrali multipli regolari”, Mem. Acad. Sci. Torino, 3:1 (1957), 25–43 (In Italian) | MR | Zbl

[4] Nash J., “Continuity of solutions of parabolic and elliptic equations”, American Journal of Mathematics, 80:4 (1958), 931–954 | DOI | MR | Zbl

[5] Morrey C.B., “Second order elliptic equations in several variables and Holder continuity”, Mathematische Zeitschrift, 72 (1959), 146–164 | DOI | MR | Zbl

[6] Uraltseva N.N., “On regularity of solutions of multidimensional elliptic equations and variational problems”, Doklady Akademii Nauk SSSR, 130:6 (1960), 1206–1209 (In Russ.) | Zbl

[7] Stampacchia G., “Problemi al contorno ellittici, con dati discontinui, dotati di soluzioni holderiane”, Annali di Matematica Pura ed Applicata, 51 (1960), 1–37 | DOI | MR | Zbl

[8] Moser J., “A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Communications on Pure and Applied Mathematics, 13:3 (1960), 457–468 | DOI | MR | Zbl

[9] Moser J., “On Harnack's theorem for elliptic differential equations”, Communications on Pure and Applied Mathematics, 14:3 (1961), 577–591 | DOI | MR | Zbl

[10] Litman W., Stampacchia G., Weinberger H.F., “Regular points for elliptic equations with discontinuous coefficients”, Annali della Scuola Normale Superiore di Pisa – Classe de Scienze, Serie 3, 17:1–2 (1963), 43–77 http://www.numdam.org/item/ASNSP_1963_3_17_1-2_43_0

[11] Royden H., “The growth of a fundamental solution of an elliptic divergence structure equation”, Studies in Mathematical Analysis and Related Topics, 1962, 333–340 | MR | Zbl

[12] Alkhutov Yu.A., “Regularity of boundary points relative to the Dirichlet problem for second-order elliptic equations”, Mathematical Notes, 30:3 (1981), 333–342 (In English; original in Russian) | DOI | MR | Zbl

[13] Maz'ya V.G., “Behavior, near the boundary, of solutions of the Dirichlet problem for a second order elliptic equations in divergent form”, Mathematical Notes, 2:2 (1967), 610–617 (In English; original in Russian) | DOI

[14] Guseynov S.T., “The regularity test of boundary point for non-uniformly degenerating second order elliptic equations”, Proceedings of IMM of Azerbaijan AS, XI:19 (1999), 65–77 https://www.imm.az/journals/RMI_eserleri/cild11_N19_1999/meqaleler/65-77.pdf | MR | Zbl