Modeling of nanoheterojunction betavoltaic cell on GaN and GaP with Si and 3C-SiC/Si
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 4, pp. 133-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the electrophysical properties and efficiency of energy converters — betavoltaic elements, which contain a GaN and GaP heterojunction on Si and 3C-SiC/Si substrates, are modeled. For conversion into electrical energy, external ${}^{63}$Ni or internal ${}^{14}$C radioactive sources with a test specific activity of 100 mCi$\cdot$cm$^{-2}$ are investigated in the simulation. The system of parameters and characteristics is optimized: diffusion lengths, short-circuit current, open circuit voltage, filling factor, reverse saturation current and efficiency. It was shown in simulation results, that in the device structure with junction depth of 0.1 microns, the good operation of a betavoltaic element is determined, the short-circuit current density is up to 200 nA$\cdot$cm$^{-2}$, the open circuit voltage is up to 3.7 V, the power density is up to 700 nW$\cdot$cm$^{-2}$, efficiency up to 25 %. The conversion efficiency reaches its maximum value when using a radioisotope source with an activity density from 25 to 100 mCi$\cdot$cm$^{-2}$. The conversion efficiency with the location of the injector source inside is estimated to be about 30 times higher than with the external location.
Keywords: analytical modeling, nanoheterojunction, heterostructure, betavoltaic converter, radioactivity density, betavoltaic battery.
Mots-clés : gallium nitride, gallium phosphide, betavoltaic element, nickel-63 radionuclide, carbon-14 radionuclide
@article{VSGU_2023_29_4_a7,
     author = {M. V. Dolgopolov and A. S. Chipura},
     title = {Modeling of nanoheterojunction betavoltaic cell on {GaN} and {GaP} with {Si} and {3C-SiC/Si}},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {133--142},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a7/}
}
TY  - JOUR
AU  - M. V. Dolgopolov
AU  - A. S. Chipura
TI  - Modeling of nanoheterojunction betavoltaic cell on GaN and GaP with Si and 3C-SiC/Si
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 133
EP  - 142
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a7/
LA  - ru
ID  - VSGU_2023_29_4_a7
ER  - 
%0 Journal Article
%A M. V. Dolgopolov
%A A. S. Chipura
%T Modeling of nanoheterojunction betavoltaic cell on GaN and GaP with Si and 3C-SiC/Si
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 133-142
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a7/
%G ru
%F VSGU_2023_29_4_a7
M. V. Dolgopolov; A. S. Chipura. Modeling of nanoheterojunction betavoltaic cell on GaN and GaP with Si and 3C-SiC/Si. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 4, pp. 133-142. http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a7/

[1] Moseley H.G.J., “The Attainment of High Potentials by the Use of Radium”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 88 (1913), 471–476 | DOI

[2] Ehrenberg W., Lang C., West R., “The Electron Voltaic Effect”, Proceedings of the Physical Society. Section A, 64:4 (1951), 424 | DOI

[3] Rappaport P., “The Electron-Voltaic Effect in p-n Junctions Induced by Beta-Particle Bombardment”, Phys. Revyu, 93:1 (1954), 246 | DOI

[4] Spencer M.G., Alam T., “High power direct energy conversion by nuclear batteries”, Applied Physics Reviews, 6 (2019), 031305 | DOI

[5] Zhou Chunlin, Zhang Jinsong, Wang Xu, Yang Yushu, Xu Pan, Li Peixian, Zhang Lu, Chen Zhiyuan, Feng Huanran, Wu Weiwei, “Review-Betavoltaic Cell: The Past, Present, and Future”, ECS Journal of Solid State Science and Technology, 10:2 (2021), 027005 | DOI

[6] Naseem M.B., Kim H.S., Lee J., Kim C.H., In S.-I., “Betavoltaic Nuclear Battery: A Review of Recent Progress and Challenges as an Alternative Energy Source”, The Journal of Physical Chemistry C, 127:16 (2023), 7565–7579 | DOI

[7] Ho Wan, Chow Yi, Nakamura Shuji, Peretti Jacques, Weisbuch Claude, Speck James, “Measurement of minority carrier diffusion length in p-GaN using electron emission spectroscopy (EES)”, Applied Physics Letters, 122 (2023), 212103 | DOI

[8] Chepurnov V.I., Dolgopolov M.V., Gurskaya A.V., Latukhina N.V., Method for producing a porous layer of a silicon carbide heterostructure on a silicon substrate, Patent for an invention RU 2 653 398 C2, 08.05.2018. Application No 2016129598 dated 19.07.2016 (In Russ.)

[9] Kuznetsova A., Chepurnov V., Dolgopolov M., Gurskaya A., Kuznetsov O., Mashnin A., Radenko V., Radenko A., Surnin O., Zanin G., “Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter”, EPJ Web of Conferences, 158 (2017), 06004 | DOI

[10] Chepurnov V.I., Puzyrnaya G.V., Gurskaya A.V., Dolgopolov M.V., Anisimov N.S., “Experimental investigation of semiconductor structures of the power source based on carbon-14”, Physics of Wave Processes and Radio Systems, 22:3 (2019), 55–67 (In Russ.) | DOI

[11] Roccaforte F., Giannazzo F., Raineri V., “Nanoscale transport properties at silicon carbide interfaces”, Journal of Physics D: Applied Physics, 43:22 (2010), 223001 | DOI

[12] Protasov D.Y., Malin T.V., Tikhonov A.V. et al., “Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas”, Semiconductors, 47 (2013), 33–44 (In English; original in Russian) | DOI

[13] Reyyan Kavak Yuruk, Hayriye Tutunculer, “Theoretical Investigation of High-Efficiency GaN-Si Heterojunction Betavoltaic Battery”, Canadian Journal of Physics, 97:9 (2019), 1031–1038 | DOI

[14] Demeter T., Athanassios A. Tsekouras, “The electron affinity of gallium nitride (GaN) and digallium nitride (GaNGa): The importance of the basis set superposition error in strongly bound systems”, The Journal of Chemical Physics, 128 (2008), 144103 | DOI

[15] Wang Y., Lu J., Zheng R., Li X., Liu Y., Zhang X., Zhang Y., Chen Z., “Theoretical study of a high-efficiency GaP-Si heterojunction betavoltaic cell compared with metal-Si Schottky barrier betavoltaic cell”, AIP Advances, 11 (2021), 065110 | DOI

[16] Willardson R.K., Weber E.R., SiC Materials and Devices, Elsevier Science, London, UK, 1998, 420 pp. https://books.google.ru/books?id=bYms_kigMX8C&hl=en&redir_esc=y

[17] Lin Z., “Simulation and optimization design of SiC-based pn betavoltaic microbattery using tritium source”, Crystals, 10:2 (2020), 105 | DOI

[18] Bouzid F., Pezzimenti F., Dehimi L., “Modelling and performance analysis of a GaN-based n/p junction betavoltaic cell”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 969 (2020), 164103 | DOI

[19] Dolgopolov M.V., Elisov M.V., Rajapov S.A., Chipura A.S., “Scaling Models of Electrical Properties of Photo and Beta-Converters with Nano-Heterojunctions”, Computational Nanotechnology, 10:1 (2023), 138–146 (In Russ.) | DOI

[20] Chepurnov V.I., Rajapov S.A., Dolgopolov M.V., Puzyrnaya G.V., Gurskaya A.V., “Efficiency determination problems for SiC*/Si microstructures and contact formation”, Computational Nanotechnology, 8:3 (2021), 59–68 (In Russ.) | DOI

[21] Gurskaya A.V., Dolgopolov M.V., Chepurnov V.I. et al., “Contacts for SiC Nano-Microwatt Energy Converters”, Vestnik Moskovskogo Universiteta Seriya 3 Fizika Astronomiya, 78:1 (2023), 2310103 | DOI | DOI

[22] Rahmani F., Khosravinia H., “Optimization of silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si schottky barrier”, Radiation Physics and Chemistry, 2016, no. 125, 205–212 | DOI

[23] Dolgopolov V.V., Chepurnov V.I., Chipura A.S. etc., “Scaling and activation of nanoheterojunctions on silicon and silicon carbide substrates”, Proceedings of the International Conference “Fundamental and Applied Problems of Modern Physics”, Section II, 2023, 88–92