@article{VSGU_2023_29_4_a4,
author = {K. A. Mushankova and L. V. Stepanova},
title = {Experience in modeling inclined cracks in materials with cubic crystal structure},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {106--116},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a4/}
}
TY - JOUR AU - K. A. Mushankova AU - L. V. Stepanova TI - Experience in modeling inclined cracks in materials with cubic crystal structure JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 106 EP - 116 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a4/ LA - ru ID - VSGU_2023_29_4_a4 ER -
%0 Journal Article %A K. A. Mushankova %A L. V. Stepanova %T Experience in modeling inclined cracks in materials with cubic crystal structure %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 106-116 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a4/ %G ru %F VSGU_2023_29_4_a4
K. A. Mushankova; L. V. Stepanova. Experience in modeling inclined cracks in materials with cubic crystal structure. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 4, pp. 106-116. http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a4/
[1] Cui Y., Chew H.B., “Machine-Learning Prediction of Atomistic Stress along Grain Boundaries”, Acta Materialia, 222 (2022), 117387 | DOI
[2] Li R., Chew H.B., “Grain boundary traction signatures: Quantitative Predictors and Dislocation Emission”, Physical Review Letters, 117:8 (2016), 085502 | DOI
[3] Li R., Chew H.B., “Grain boundary traction signatures: Quantifying the asymmetrical dislocation emission processes under tension and compression”, Journal of the Mechanics and Physics of Solids, 103 (2017), 142–154 | DOI
[4] Wu W.-P., Yao Z.-Z., “Molecular dynamics simulation of stress distribution and microstructure evolution ahead of a growing crack in single crystal nickel”, Theoretical and Applied Fracture Mechanics, 62 (2012), 67–75 | DOI
[5] Yamakov V., Saether E., Phillips D.R., Glaessgen E.H., “Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum”, Journal of the Mechanics and Physics of Solids, 54:9 (2006), 1899–1928 | DOI | Zbl
[6] Egami T., “Atomic level stress”, Progress in Materials Science, 56:6 (2011), 637–653 | DOI
[7] Tsai D.H., “The virial theorem and stress calculation in molecular dynamics”, Journal of Chemical Physics, 70:3 (1979), 1375–1382 | DOI
[8] Nartin R.M., “First-Principles Calculation of Stress”, Physical Review Letters, 50:9 (1983), 697–700 | DOI
[9] Nielsen O.N., Martin R.M., “Quantum-mechanical theory of stress and force”, Physical Review B, 32:6 (1985), 3780 | DOI
[10] Maranganti R., Sharma P., “Revisiting quantum notions os stress”, Proceedings of the Royal Society A, 466:2119 (2010), 2097–2116 | DOI | MR | Zbl
[11] Maranganti R., Sharma P., Wheeler L., “Quantum notions of stress”, Journal of Aerospace Engineering, 20:1 (2007), 22–37 | DOI
[12] Shiihara Y., Kohyama M., Ishibashi S., “Ab initio local stress and its application to Al (111) surfaces”, Physical Review B, 81:7 (2010), 075441 | DOI
[13] Wang H., Kohyama M., Tanaka S., Shiihara Y., “Ab initio local-energy and local-stress analysis of tensile behaviours of titl grain boundaries in Al and Cu”, Modelling and Simulation in Materials Science and Engineering, 25:1 (2017), 015005 | DOI
[14] Cui Y., Chew H.B., “A simple numerical approach for reconstructing the atomic stresses at grain boundaries from quantum-mechanical calculations”, Journal of Chemical Physics, 150:14 (2019), 144702 | DOI
[15] Nicholson D.M., Ojha M., Egami T., “First-principles local stress in crystalline and amorphous metals”, Journal of Physics: Condensed Matter, 25:43 (2013), 435505 | DOI
[16] Koch C.T., Ozdol V.B., Van Aken P.A., “An efficient, simple, and precise way to map strain with nanometer resolution in semiconductor devices”, Applied Physics Letters, 96:9 (2010), 091901 | DOI
[17] Hytch M, Houdeller, Hue F., Snoeck E., “Nano scale holographic interferometry for strain measurements in electronic devices”, Nature, 453:7198 (2008), 1086–1089 | DOI
[18] Beche A., Rouviere J.L., Barnes J.P., Cooper D., “Strain measurement at the nanoscale: Comparison between convergent beam electron diffraction, nano-beam electron diffraction, high resolution imaging and dark field electron holography”, Ultramicroscopy, 131 (2013), 10–23 | DOI
[19] Legros M., “In situ mechanical TEM: Seeing and measuring under stress with electrons”, Comptes Rendus Physique, 15 (2014), 224–240 | DOI
[20] Li Y.-M., Zhang B., “Cracking direction in grapheme under mixed mode loading”, Engineering Fracture Mechanics, 289 (2022), 109434 | DOI
[21] Min B., Chen X., Li Ke, Wang Z., “Multiscale study of enhancing the fracture properties of interfacial transition zone: Insights from molecular dynamics and finite element simulations”, Construction and Building Materials, 409 (2023), 133846 | DOI
[22] Stepanova L.V., Belova O.N., “Identification of stress intensity factors, T-stresses and higher-order coefficients of regular terms in the Williams series expansion through molecular dynamics simulations”, PNRPU Mechanics Bulletin, 2023, no. 2, 47–77 (In Russ.) | DOI
[23] Mushankova K.A., Stepanova L.V., “Influence of high-order terms in the solution generalizing the approach of M. Williams, taking into accounr the anisotropy of the material”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya – Vestnik of Samara University. Natural Science Series, 29:2 (2023), 30–40 (In Russ.) | DOI | DOI | MR
[24] Stepanova L.V., Belova O.N., “Coefficients of the williams power expansion of the near crack tip stress field in continuum linear elastic fracture mechanics at the nanoscale”, Theoretical and Applied Fracture Mechanics, 119 (2022), 103298 | DOI
[25] Stepanova L.V., Belova O.N., “Stress intensity factors, T-stresses and higher order coefficients of the Williams series expansion and their evaluation through molecular dynamics simulations”, Mechanics of Advanced Materials and Structures, 30:19 (2023), 3862–3884 | DOI
[26] Mushankova K.A., Stepanova L.V., “Molecular dynamic modeling of stress fields in plates with a central crack made of materials with a face-centered cubic lattice”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya – Vestnik of Samara University. Natural Science Series, 27:4 (2021), 68–82 (In Russ.) | DOI
[27] Nejati M., Ghouli S., Ayatollahi M.R., “Crack tip asymptotic fields in anisotropic planes: Importance of higher order terms”, Applied Mathematical Modelling, 91 (2021), 837–862 | DOI | MR | Zbl
[28] Ayatollahi M.R., Nejati M., Ghouli S., “The finite element over-deterministic method to calculate the coefficients of the crack tip asymptotic fields in anisotropic planes”, Engineering Fracture Mechanics, 231 (2020), 106982 | DOI | MR
[29] Sakha M., Nejati M., Aminzadeh A., Ghouli S., Saar M.O., “On the validation of mixed-mode I/II crack growth theories for anisotropic rocks”, International Journal of Solids and Structures, 241 (2022), 111484 | DOI
[30] Admal N.C., Tadmor E.B., “A unified interpretation of stress in molecular systems”, Journal of Elasticity, 100:1–2 (2010), 63–143 | DOI | MR | Zbl