@article{VSGU_2023_29_4_a3,
author = {S. A. Lychev and A. V. Digilov and N. A. Pivovaroff},
title = {Bending of a circular disk: from cylinder to ultrathin membrane},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {77--105},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a3/}
}
TY - JOUR AU - S. A. Lychev AU - A. V. Digilov AU - N. A. Pivovaroff TI - Bending of a circular disk: from cylinder to ultrathin membrane JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 77 EP - 105 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a3/ LA - ru ID - VSGU_2023_29_4_a3 ER -
%0 Journal Article %A S. A. Lychev %A A. V. Digilov %A N. A. Pivovaroff %T Bending of a circular disk: from cylinder to ultrathin membrane %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 77-105 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a3/ %G ru %F VSGU_2023_29_4_a3
S. A. Lychev; A. V. Digilov; N. A. Pivovaroff. Bending of a circular disk: from cylinder to ultrathin membrane. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 4, pp. 77-105. http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a3/
[1] Zorman C., “Material Aspects of Micro- and Nanoelectromechanical Systems”, Springer Handbook of Nanotechnology, Springer Handbooks, ed. Bhushan B., Springer-Verlag, Berlin, 2010, 299–322 | DOI
[2] Dedkova A.A. et al., “Peculiarities of deformation of round thin-film membranes and experimental determination of their effective characteristics”, Technical Physics, 91:10 (2021), 1454–1465 | DOI
[3] Volmir A.S., Flexible plates and shells, Gostekhizdat, M., 1956, 419 pp. (In Russ.)
[4] Manzhirov A.V., Lychev S.A., “On the equilibrium of accreted plates”, Topical Problems in Solid and Fluid Mechanics, eds. A.V. Manzhirov, N.K. Gupta, D.A. Indeitsev, Elite Pub. House, Delhi, 2011, 294–300
[5] Lychev S.A., Manzhirov A.V., Lycheva T.N., “Unsteady vibration of a growing circular plate”, Mechanics of Solids, 46:2 (2011), 325–333 (In English; original in Russian) | DOI
[6] Lychev S., “Equilibrium equations for transversely accreted shells”, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 94:1–2 (2014), 118–129 | DOI | MR | Zbl
[7] Gurtin M.E., The Linear Theory of Elasticity, ed. Truesdell C., Springer, Berlin–Heidelberg, 1984, 304 pp. | DOI | MR
[8] Wang C.-C., Truesdell C., Introduction to rational elasticity, Springer Science Business Media Elsevier, 1973, 556 pp. https://books.google.ru/books?id=cGtGRkTB_MCamp;printsec=frontcoveramp;hl=ru#v=onepageamp;qamp;f=false
[9] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer, Berlin–Heidelberg, 2004, 602 pp. | DOI | MR
[10] Pochhammer L., “Beitrag zur Theorie der Biegung des Kreiscylinders”, Journal fur die reine und angewandte Mathematik, 1876:81 (1876), 33–61 | DOI | MR
[11] Chree C., “The equations of an isotropic elastic solid in polar and cylindrical coordinates, their solutions and applications”, Transactions of the Cambridge Philosophical Society, 14 (1889), 251–369
[12] Chau K.T., Wei X.X., “Finite solid circular cylinders subjected to arbitrary surface load. Part I — Analytic solution”, International Journal of Solids and Structures, 37:40 (2000), 5707–5732 | DOI
[13] Lurie A.I., Spatial problems of elasticity theory, GITTL, M., 1955 (In Russ.)
[14] Lurie A.I., Theory of elasticity, Nauka, M., 1970, 940 pp. (In Russ.)
[15] Senitskii Yu.E., “Dynamic problem of electroelasticity for a nonhomogeneous cylinder”, Journal of Applied Mathematics and Mechanics, 57:1 (1993), 116–122 (In Russ.) | Zbl
[16] Senitskii Yu.E., Shlyakhin D.A., “Nonstationary axisymmetric problem of electroelasticity for a thick circular anisotropic piezoceramic plate”, Mechanics of Solids, 1999, no. 1, 78–87 (In Russ.)
[17] Filon L.N.G., “On the elastic equilibrium of circular cylinders under certain practical systems of load”, Proceedings of the Royal Society of London, 68:442–450 (1901), 353–358 | DOI
[18] Saito H., “The Axially Symmetrical Deformation of a Short Circular Cylinder”, Transactions of the Japan Society of Mechanical Engineers, 18:68 (1952), 21–28 (In Japanese) | DOI
[19] Saito H., “The Axially Symmetrical Deformation of a Short Circular Cylinder”, Transactions of the Japan Society of Mechanical Engineers, 20:91 (1954) (In Japanese)
[20] Ziza O.A., Summability of Orthogonal Series, URSS, M., 1999, 281 pp. (In Russ.) | MR
[21] Timoshenko S., Woinowsky-Krieger S., Theory of plates and shells, McGraw-hill, New York–Toronto–London, 1959, 636 pp. | MR
[22] Biderman V.L., Mechanics of thin-walled structures. Statics, Mashinostroenie, M., 1977, 488 pp. (In Russ.)
[23] Lychev S.A., Saleev S.V., “Closed solution of boundary value problem for rectangular plate fixed on boundary”, Vestnik of Samara University. Natural Science Series, 2006, no. 2, 62–73 (In Russ.)
[24] Novozhilov V.V., Theory of thin shells, Izdatel'stvo SPbGU, Saint Petersburg, 2010, 378 pp. (In Russ.) | MR
[25] Reddy J.N., Theory and analysis of elastic plates and shells, CRC Press, Boca Raton, 2006, 568 pp. | DOI
[26] Kil'chevskii N.A., Fundamentals of analytical mechanics of shells, Izdatel'stvo Akademii nauk Ukrainskoy SSR, Kyiv, 1963, 354 pp. (In Russ.)
[27] Podio-Guidugli P., “An exact derivation of the thin plate equation”, Journal of Elasticity, 22:2–3 (1989), 121–133 | DOI | MR | Zbl
[28] Lekhnitsky S.G., Theory of anisotropic body elasticity, Nauka, M., 1977, 417 pp. (In Russ.)
[29] Föppl A., Vorlesungen über technische Mechanik, v. 5, B.G. Teubner Verlag, Leipzig, 1907 https://archive.org/details/vorlesungenuber00foppgoog/mode/2up
[30] Kármán T., “Festigkeitsprobleme im Maschinenbau”, Encyclopadie Der Mathematischen Wissenschaften, v. 4, B.G. Teubner Verlag, Lepzig, 1910, 311–385 | DOI
[31] Ciarlet P.G., “A justification of the von Karman equations”, Archive for Rational Mechanics and Analysis, 73:4 (1980), 349–389 | DOI | MR | Zbl
[32] Ciarlet P.G., Mathematical elasticity, v. 1, Three-dimensional elasticity, Society for Industrial and Applied Mathematics, Amsterdam, 2021, 451 pp. | DOI | MR
[33] Ciarlet P.G., Rabie P., Karman equations, New in foreign science. Mechanics, 31, Mir, M., 2006, 172 pp. (In Russ.)
[34] Ciarlet P.G., Mathematical Elasticity, v. III, Theory of Shells, Society for Industrial and Applied Mathematics, Amsterdam, 2022, 599 pp. https://www.sciencedirect.com/bookseries/studies-in-mathematics-and-its-applications/vol/29
[35] Reissner E., “On finite deflections of circular plates”, Proceedings of Symposia in Applied Mathematics, 1 (1949), 213–219 | DOI | MR | Zbl
[36] Vainberg M.M., Trenogin V.A., Theory of branching of solutions of nonlinear equations, Nauka, M., 1969, 529 pp. (In Russ.) | MR
[37] Zhang Y., “Large deflection of clamped circular plate and accuracy of its approximate analytical solutions”, Science China Physics, Mechanics Astronomy, 59:2 (2016), 624602 | DOI
[38] Van Gorder R.A., “Analytical method for the construction of solutions to the Foppl-von Karman equations governing deflections of a thin flat plate”, International Journal of Non-Linear Mechanics, 47:3 (2012), 1–6 | DOI
[39] Van Gorder R.A., “Asymptotic solutions for the Foppl-von Karman equations governing deflections of thin axisymmetric annular plates”, International Journal of Non-Linear Mechanics, 91 (2017), 8–21 | DOI
[40] Yu Q., Xu H., Liao S., “Coiflets solutions for Foppl-von Karman equations governing large deflection of a thin flat plate by a novel wavelet-homotopy approach”, Numerical Algorithms, 79 (2018), 993–1020 | DOI | MR | Zbl
[41] Bychkov P.S., Lychev S.A., Bout D.K., “Experimental technique for determining the evolution of the bending shape of thin substrate by the copper electrocrystallization in areas of complex shapes”, Vestnik of Samara University. Natural Science Series, 25:4 (2019), 48–73 (In Russ.) | DOI | MR
[42] Watson G.N., A Treatise on the Theory of Bessel Functions, Izdatel'stvo inostrannoy literatury, M., 1949, 784 pp. (In Russ.)
[43] Feodosiev V.I., “Axisymmetric flexible shells”: Ponomarev S.D., Strength calculations in mechanical engineering, v. 2, MAShGIZ, M., 1958, 974 pp. (In Russ.)
[44] Andreeva L.E., Elastic elements of instruments, MAShGIZ, M., 1962, 462 pp. (In Russ.)
[45] Freund L.B., Suresh S., Thin Film Materials. Stress, Defect Formation and Surface Evolution, Cambridge University Press, Cambridge, 2004 | DOI | Zbl
[46] Adkins J.E., Rivlin R.S., “Large elastic deformations of isotropic materials IX. The deformation of thin shells”, Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 244:888 (1952), 505–531 | DOI | MR | Zbl
[47] Yang W.H., Feng W.W., “On Axisymmetrical Deformations of Nonlinear Membranes”, Journal of Applied Mechanics, 37:4 (1970), 1002–1011 | DOI | Zbl