Reference shape of bodies with enhanced kinematics. Part II. Second gradient and microstructure
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 4, pp. 54-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work develops differential-geometric methods for modeling finite incompatible deformations of hyperelastic solids with enhanced kinematics. The response of such bodies, along with the standard kinematic field represented by the deformation gradient, is characterized by additional tensor fields. As such, the paper considers: 1) the second deformation gradient and 2) the tensor field of the second rank, modeling the microstructure of the body. For each of these two cases, compatibility conditions are obtained and their geometric interpretation is proposed. Geometry is synthesized on the material manifold representing a body with enhanced kinematics. The corresponding affine connection has non-zero torsion and curvature, which can be useful for modeling a body with dislocations and disclinations.
Keywords: hyperelasticity, body with enhanced kinematics, residual stresses, non-Euclidean geometry, material metric, material connection, curvature, non-metricity.
Mots-clés : second gradient, microstructure, incompatible deformations, torsion
@article{VSGU_2023_29_4_a2,
     author = {K. G. Koifman},
     title = {Reference shape of bodies with enhanced kinematics. {Part} {II.} {Second} gradient and microstructure},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {54--76},
     year = {2023},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a2/}
}
TY  - JOUR
AU  - K. G. Koifman
TI  - Reference shape of bodies with enhanced kinematics. Part II. Second gradient and microstructure
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 54
EP  - 76
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a2/
LA  - ru
ID  - VSGU_2023_29_4_a2
ER  - 
%0 Journal Article
%A K. G. Koifman
%T Reference shape of bodies with enhanced kinematics. Part II. Second gradient and microstructure
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 54-76
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a2/
%G ru
%F VSGU_2023_29_4_a2
K. G. Koifman. Reference shape of bodies with enhanced kinematics. Part II. Second gradient and microstructure. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 4, pp. 54-76. http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a2/

[1] Koifman K.G., “Reference shape of bodies with enhanced kinematics. Part I. Geometric methods. Vestnik Samarskogo Universiteta”, Estestvennonauchnaya Seriya Vestnik of Samara University. Natural Science Series, 29:4 (2023), 26–53 | MR

[2] Kröner E., “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen”, Archive for Rational Mechanics and Analysis, 4:4 (1959), 18–334 https://libcats.org/book/789336 | MR

[3] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR

[4] Wang C.-C., “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 33–94 | DOI | MR | Zbl

[5] Miri M., Rivier N., “Continuum elasticity with topological defects, including dislocations and extra-matter”, Journal of Physics A: Mathematical and General, 35:7 (2002), 1727–1739 | DOI | MR | Zbl

[6] Epstein M., El$\dot{z}$anowski M., Material inhomogeneities and their evolution: A geometric approach, Springer Science Business Media, Berlin–Heidelberg, 2007, 261 pp. | DOI | MR

[7] Yavari A., Goriely A., “Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics”, Archive for Rational Mechanics and Analysis, 205:1 (2012), 59–118 | DOI | MR | Zbl

[8] Lychev S.A., Manzhirov A.V., “The mathematical theory of growing bodies. Finite deformations”, Journal of Applied Mathematics and Mechanics, 77:4 (2013), 421–432 (In English; original in Russian) | DOI | MR | Zbl

[9] Lychev S.A., Koifman K.G., “Contorsion of Material Connection in Growing Solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl

[10] Lychev S.A., Koifman K.G., “Reference shape of bodies with finite incompatible deformations”, Vestnik of Samara University. Natural Science Series, 28:3–4 (2022), 53–87 (In Russ.) | DOI | MR

[11] Kartan E., Spaces of affine, projective and conformal connection, Izd-vo Kazanskogo universiteta, Kazan, 1962, 210 pp. (In Russ.) | MR

[12] Kartan E., Riemannian geometry in an orthogonal frame, Nauka, M., 1960, 207 pp. (In Russ.)

[13] Kartan E., Geometry of Riemannian spaces, Knizhnyi dom «Librokom», M., 2010, 248 pp. (In Russ.)

[14] Lee J.M., Introduction to Smooth Manifolds, Springer, New York, 2012, 708 pp. | DOI | MR

[15] Toupin R.A., “Theories of elasticity with couple-stress”, Archive for Rational Mechanics and Analysis, 17 (1964), 85–112 | DOI | MR | Zbl

[16] Kalpakides V., Agiasofitou E., “On Material Equations in Second Gradient Electroelasticity”, Journal of elasticity and the physical science of solids, 67 (2002), 205–227 | DOI | MR | Zbl

[17] Schwartz L., Analysis, v. 1, Mir, M., 1972, 824 pp. (In Russ.)

[18] Postnikov M.M., Lections in geometry. Semester II. Linear algebra, URSS, M., 2017, 400 pp. (In Russ.)

[19] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, Encyclopedia of Physics/Handbuch der Physik, 2/3/1, eds. Flugge S., Springer, Berlin–Heidelberg | DOI | MR | Zbl

[20] Maugin G.A., Material inhomogeneities in elasticity, CRC Press, New York, 1993, 292 pp. | DOI | MR

[21] Marsden J.E., Hughes T.J., Mathematical foundations of elasticity, Courier Corporation, New York, 1994, 576 pp. https://archive.org/details/mathematicalfoun00mars

[22] Epstein M., El$\dot{z}$anowski M., Material inhomogeneities and their evolution: A geometric approach, Springer Science Business Media, Berlin–Heidelberg, 2007, 261 pp. | DOI | MR

[23] Lychev S.A., “On conservation laws of micromorphic nondissipative thermoelasticity”, Vestnik of Samara State University, 2007, no. 4(54), 225–262 (In Russ.) | MR | Zbl

[24] Mindlin R.D., “Micro-structure in linear elasticity”, Archive for Rational Mechanics and Analysis, 16 (1964), 51–78 | DOI | MR | Zbl

[25] Whitney H., “Sphere spaces”, Proceedings of the National Academy of Sciences, 21:7 (1935), 462–468 | DOI

[26] Seifert H., “Topologie Dreidimensionaler Gefaserter Räume”, Acta Mathematica, 60 (1933), 147–238 | DOI | MR | Zbl

[27] Feldbau J., “Sur la classification des espaces fibrés”, Comptes rendus de l'Académie des Sciences, 208 (1939), 1621–1623 | Zbl

[28] Ehresmann C., “Sur les espaces fibrés différentiables”, Comptes rendus de l'Académie des Sciences, 224 (1947), 1611–1612 | MR | Zbl

[29] Steenrod N.E., The topology of fibre bundles, Izdatel'stvo inostrannoi literatury, M., 2010, 272 pp. (In Russ.)

[30] Postnikov M.M., Lections in geometry. Semester IV. Differential geometry, URSS, M., 2017, 504 pp. (In Russ.)

[31] Lychev S.A., Koifman K.G., Digilov A.V., “Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I”, Vestnik of Samara University. Natural Science Series, 27:1 (2021), 81–103 | DOI | MR

[32] Nguyen V.H., Casale G., Le Marrec L., “On tangent geometry and generalised continuum with defects”, Mathematics and Mechanics of Solids, 27:7 (2022), 1255–1283 | DOI | MR

[33] Lurie A.I., Analytical Mechanics, GIFML, M., 1961, 824 pp. (In Russ.)

[34] Liang K.K., Efficient conversion from rotating matrix to rotation axis and angle by extending Rodrigues' formula, 2018, arXiv: 1810.02999