Mots-clés : second gradient, microstructure, incompatible deformations, torsion
@article{VSGU_2023_29_4_a2,
author = {K. G. Koifman},
title = {Reference shape of bodies with enhanced kinematics. {Part} {II.} {Second} gradient and microstructure},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {54--76},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a2/}
}
TY - JOUR AU - K. G. Koifman TI - Reference shape of bodies with enhanced kinematics. Part II. Second gradient and microstructure JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 54 EP - 76 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a2/ LA - ru ID - VSGU_2023_29_4_a2 ER -
%0 Journal Article %A K. G. Koifman %T Reference shape of bodies with enhanced kinematics. Part II. Second gradient and microstructure %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 54-76 %V 29 %N 4 %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a2/ %G ru %F VSGU_2023_29_4_a2
K. G. Koifman. Reference shape of bodies with enhanced kinematics. Part II. Second gradient and microstructure. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 4, pp. 54-76. http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a2/
[1] Koifman K.G., “Reference shape of bodies with enhanced kinematics. Part I. Geometric methods. Vestnik Samarskogo Universiteta”, Estestvennonauchnaya Seriya Vestnik of Samara University. Natural Science Series, 29:4 (2023), 26–53 | MR
[2] Kröner E., “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen”, Archive for Rational Mechanics and Analysis, 4:4 (1959), 18–334 https://libcats.org/book/789336 | MR
[3] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR
[4] Wang C.-C., “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 33–94 | DOI | MR | Zbl
[5] Miri M., Rivier N., “Continuum elasticity with topological defects, including dislocations and extra-matter”, Journal of Physics A: Mathematical and General, 35:7 (2002), 1727–1739 | DOI | MR | Zbl
[6] Epstein M., El$\dot{z}$anowski M., Material inhomogeneities and their evolution: A geometric approach, Springer Science Business Media, Berlin–Heidelberg, 2007, 261 pp. | DOI | MR
[7] Yavari A., Goriely A., “Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics”, Archive for Rational Mechanics and Analysis, 205:1 (2012), 59–118 | DOI | MR | Zbl
[8] Lychev S.A., Manzhirov A.V., “The mathematical theory of growing bodies. Finite deformations”, Journal of Applied Mathematics and Mechanics, 77:4 (2013), 421–432 (In English; original in Russian) | DOI | MR | Zbl
[9] Lychev S.A., Koifman K.G., “Contorsion of Material Connection in Growing Solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl
[10] Lychev S.A., Koifman K.G., “Reference shape of bodies with finite incompatible deformations”, Vestnik of Samara University. Natural Science Series, 28:3–4 (2022), 53–87 (In Russ.) | DOI | MR
[11] Kartan E., Spaces of affine, projective and conformal connection, Izd-vo Kazanskogo universiteta, Kazan, 1962, 210 pp. (In Russ.) | MR
[12] Kartan E., Riemannian geometry in an orthogonal frame, Nauka, M., 1960, 207 pp. (In Russ.)
[13] Kartan E., Geometry of Riemannian spaces, Knizhnyi dom «Librokom», M., 2010, 248 pp. (In Russ.)
[14] Lee J.M., Introduction to Smooth Manifolds, Springer, New York, 2012, 708 pp. | DOI | MR
[15] Toupin R.A., “Theories of elasticity with couple-stress”, Archive for Rational Mechanics and Analysis, 17 (1964), 85–112 | DOI | MR | Zbl
[16] Kalpakides V., Agiasofitou E., “On Material Equations in Second Gradient Electroelasticity”, Journal of elasticity and the physical science of solids, 67 (2002), 205–227 | DOI | MR | Zbl
[17] Schwartz L., Analysis, v. 1, Mir, M., 1972, 824 pp. (In Russ.)
[18] Postnikov M.M., Lections in geometry. Semester II. Linear algebra, URSS, M., 2017, 400 pp. (In Russ.)
[19] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie, Encyclopedia of Physics/Handbuch der Physik, 2/3/1, eds. Flugge S., Springer, Berlin–Heidelberg | DOI | MR | Zbl
[20] Maugin G.A., Material inhomogeneities in elasticity, CRC Press, New York, 1993, 292 pp. | DOI | MR
[21] Marsden J.E., Hughes T.J., Mathematical foundations of elasticity, Courier Corporation, New York, 1994, 576 pp. https://archive.org/details/mathematicalfoun00mars
[22] Epstein M., El$\dot{z}$anowski M., Material inhomogeneities and their evolution: A geometric approach, Springer Science Business Media, Berlin–Heidelberg, 2007, 261 pp. | DOI | MR
[23] Lychev S.A., “On conservation laws of micromorphic nondissipative thermoelasticity”, Vestnik of Samara State University, 2007, no. 4(54), 225–262 (In Russ.) | MR | Zbl
[24] Mindlin R.D., “Micro-structure in linear elasticity”, Archive for Rational Mechanics and Analysis, 16 (1964), 51–78 | DOI | MR | Zbl
[25] Whitney H., “Sphere spaces”, Proceedings of the National Academy of Sciences, 21:7 (1935), 462–468 | DOI
[26] Seifert H., “Topologie Dreidimensionaler Gefaserter Räume”, Acta Mathematica, 60 (1933), 147–238 | DOI | MR | Zbl
[27] Feldbau J., “Sur la classification des espaces fibrés”, Comptes rendus de l'Académie des Sciences, 208 (1939), 1621–1623 | Zbl
[28] Ehresmann C., “Sur les espaces fibrés différentiables”, Comptes rendus de l'Académie des Sciences, 224 (1947), 1611–1612 | MR | Zbl
[29] Steenrod N.E., The topology of fibre bundles, Izdatel'stvo inostrannoi literatury, M., 2010, 272 pp. (In Russ.)
[30] Postnikov M.M., Lections in geometry. Semester IV. Differential geometry, URSS, M., 2017, 504 pp. (In Russ.)
[31] Lychev S.A., Koifman K.G., Digilov A.V., “Nonlinear dynamic equations for elastic micromorphic solids and shells. Part I”, Vestnik of Samara University. Natural Science Series, 27:1 (2021), 81–103 | DOI | MR
[32] Nguyen V.H., Casale G., Le Marrec L., “On tangent geometry and generalised continuum with defects”, Mathematics and Mechanics of Solids, 27:7 (2022), 1255–1283 | DOI | MR
[33] Lurie A.I., Analytical Mechanics, GIFML, M., 1961, 824 pp. (In Russ.)
[34] Liang K.K., Efficient conversion from rotating matrix to rotation axis and angle by extending Rodrigues' formula, 2018, arXiv: 1810.02999