Mots-clés : second gradient, microstructure, incompatible deformations, torsion
@article{VSGU_2023_29_4_a1,
author = {K. G. Koifman},
title = {Reference shape of bodies with enhanced kinematics. {Part} {I.} {Geometric} methods},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {26--53},
year = {2023},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a1/}
}
TY - JOUR AU - K. G. Koifman TI - Reference shape of bodies with enhanced kinematics. Part I. Geometric methods JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 26 EP - 53 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a1/ LA - ru ID - VSGU_2023_29_4_a1 ER -
K. G. Koifman. Reference shape of bodies with enhanced kinematics. Part I. Geometric methods. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 4, pp. 26-53. http://geodesic.mathdoc.fr/item/VSGU_2023_29_4_a1/
[1] Gurtin M.E., Fried E., Anand L., The Mechanics and Thermodynamics of Continua, Cambridge University Press, Cambridge, 2010, 718 pp. | DOI | MR
[2] Toupin R.A., “Theories of elasticity with couple-stress”, Archive for Rational Mechanics and Analysis, 17 (1964), 85–112 | DOI | MR | Zbl
[3] Lychev S.A., “On conservation laws of micromorphic nondissipative thermoelasticity”, Vestnik of Samara State University, 2007, no. 4(54), 225–262 (In Russ.) | MR | Zbl
[4] dell'Isola F., Andreaus U., Placidi L., “At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola”, Mathematics and Mechanics of Solids, 20:8 (2015), 887–928 | DOI | MR | Zbl
[5] dell'Isola F., Della Corte A., Giorgio I., “Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives”, Mathematics and Mechanics of Solids, 22:4 (2017), 852–872 | DOI | MR | Zbl
[6] Voigt W., “Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. II.”, Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen, 34 (1887), 53–100 https://eudml.org/doc/135897
[7] Duhem P., “Le potentiel thermodynamique et la pression hydrostatique”, Annales scientifiques de l'École Normale Supérieure, Serie 3, 10 (1893), 183–230 | DOI | MR
[8] Cosserat E. Cosserat F., Théorie des corps déformables, A. Hermann et fils, Paris, 1909, 226 pp.
[9] Ericksen J.L., “Conservation Laws for Liquid Crystals”, Transactions of The Society of Rheology, 5:1 (1961), 23–34 | DOI | MR
[10] Ericksen J.L., Truesdell C., “Exact theory of stress and strain in rods and shells”, Archive for Rational Mechanics and Analysis, 1 (1957), 295–323 | DOI | MR
[11] Toupin R.A., “Elastic materials with couple-stresses”, Archive for Rational Mechanics and Analysis, 11 (1962), 385–414 | DOI | MR | Zbl
[12] Mindlin R.D., Tiersten H.F., “Effects of couple-stresses in linear elasticity”, Archive for Rational Mechanics and Analysis, 11 (1962), 415–448 | DOI | MR | Zbl
[13] Mindlin R.D., “Micro-structure in linear elasticity”, Archive for Rational Mechanics and Analysis, 16 (1964), 51–78 | DOI | MR | Zbl
[14] Cross J.J., “Mixtures of Fluids and Isotropic Solids”, Archives of Mechanics, 25 (1973), 1024–1039 https://rcin.org.pl/Content/167085/WA727_106772_P.262-Cross-Mixtures.pdf | MR
[15] Noll W., “A mathematical theory of the mechanical behavior of continuous media”, Archive for Rational Mechanics and Analysis, 2 (1958), 197–226 | DOI | MR | Zbl
[16] Wang C.-C., “On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 33–94 | DOI | MR | Zbl
[17] Aifantis E.C., “On the Microstructural Origin of Certain Inelastic Models”, Journal of Engineering Materials and Technology, 106:4 (1984), 326–330 | DOI
[18] Triantafyllidis N., Aifantis E.C., “A gradient approach to localization of deformation. I. Hyperelastic materials”, Journal of Elasticity, 16 (1986), 225–237 | DOI | MR | Zbl
[19] Altan S.B., Aifantis E.C., “On the structure of the mode III crack-tip in gradient elasticity”, Scripta Metallurgica et Materialia, 26:2 (1992), 319–324 | DOI
[20] Ru C.Q., Aifantis E.C., “A simple approach to solve boundary-value problems in gradient elasticity”, Acta Mechanica, 101 (1993), 59–68 | DOI | MR | Zbl
[21] Gutkin M.Yu., Aifantis E.C., “Screw dislocation in gradient elasticity”, Scripta Materialia, 35:11 (1996), 1353–1358 | DOI
[22] Gutkin M.Yu., Aifantis E.C., “Edge dislocation in gradient elasticity”, Scripta Materialia, 36:1 (1997), 129–135 | DOI
[23] Gutkin M.Y., Aifantis E.C., “Dislocations and disclinations in the gradient theory of elasticity”, Physics of the Solid State, 41:12 (1999), 1980–1988 | DOI
[24] Kalpakides V., Agiasofitou E., “On Material Equations in Second Gradient Electroelasticity”, Journal of elasticity and the physical science of solids, 67 (2002), 205–227 | DOI | MR | Zbl
[25] Lurie S., Solyaev Y., “Anti-plane inclusion problem in the second gradient electroelasticity theory”, International Journal of Engineering Science, 144 (2019), 103129 | DOI | MR | Zbl
[26] Volkov-Bogorodskii D.B., Lurie S.A., “Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions”, Mechanics of Solids, 51:2 (2016), 161–176 (in English; original in Russian) | DOI
[27] Ma H., Hu G., Wei Y., Liang L., “Inclusion problem in second gradient elasticity”, International Journal of Engineering Science, 132 (2018), 60–78 | DOI | MR | Zbl
[28] Solyaev Y.O., Lurie S.A., “Eshelby integral formulas in second gradient elasticity”, Nanoscience and Technology: An International Journal, 11:2 (2020), 99–107 | DOI
[29] Eremeyev V.A., “Local material symmetry group for first- and second-order strain gradient fluids”, Mathematics and Mechanics of Solids, 26:8 (2021), 1173–1190 | DOI | MR
[30] Eremeyev V.A., “Strong Ellipticity and Infinitesimal Stability within Nth-Order Gradient Elasticity”, Mathematics, 11:4 (2023), 1024 | DOI
[31] Kondo K., “On the analytical and physical foundations of the theory of dislocations and yielding by the differential geometry of continua”, International Journal of Engineering Science, 2:3 (1964), 219–251 | DOI | MR | Zbl
[32] Yavari A., Goriely A., “Riemann–Cartan Geometry of Nonlinear Dislocation Mechanics”, Archive for Rational Mechanics and Analysis, 205:1 (2012), 59–118 | DOI | MR | Zbl
[33] Yavari A., Goriely A., “Weyl geometry and the nonlinear mechanics of distributed point defects”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468:2148 (2012), 3902–3922 | DOI | MR | Zbl
[34] Lychev S.A., Koifman K.G., “Reference shape of bodies with finite incompatible deformations”, Vestnik of Samara University. Natural Science Series, 28:3–4 (2022), 53–87 (In Russ.) | DOI | MR
[35] Epstein M., El$\dot{z}$anowski M., Material inhomogeneities and their evolution: A geometric approach, Springer Science Business Media, Berlin–Heidelberg, 2007, 261 pp. | DOI | MR
[36] Epstein M., The Geometrical Language of Continuum Mechanics, Cambridge University Press, Cambridge, 2010, 312 pp. | DOI | MR | Zbl
[37] Lychev S., Koifman K., Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics, De Gruyter, Berlin, 2019, 388 pp. | DOI | MR
[38] Kröner E., “Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen”, Archive for Rational Mechanics and Analysis, 4:4 (1959), 18–334 https://libcats.org/book/789336 | MR
[39] Anthony K.H., “Die theorie der disklinationen”, Archive for Rational Mechanics and Analysis, 39 (1970), 43–88 | DOI | MR | Zbl
[40] Anthony K.H., “Die theorie der nichtmetrischen Spannungen in Kristallen”, Archive for Rational Mechanics and Analysis, 40 (1971), 50–78 | DOI | MR | Zbl
[41] Lycheva T.N., Lychev S.A., “Evolution of the field of distributed defects in a crystal during contact interaction with a system of rigid stamps”, Vestnik of Samara University. Natural Science Series, 28:1-2 (2022), 55–73 (In Russ.) | DOI | MR
[42] Yavari A., “A Geometric Theory of Growth Mechanics”, Journal of Nonlinear Science, 20:6 (2010), 781–830 | DOI | MR | Zbl
[43] Lychev S.A., Manzhirov A.V., “The mathematical theory of growing bodies. Finite deformations”, Journal of Applied Mathematics and Mechanics, 77:4 (2013), 421–432 (in English; original in Russian) | DOI | MR | Zbl
[44] Lychev S., “Equilibrium equations for transversely accreted shells”, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 94:1–2 (2014), 118–129 | DOI | MR | Zbl
[45] Lychev S.A., Koifman K.G., “Geometric Aspects of the Theory of Incompatible Deformations. Part I. Uniform Configurations”, Nanomechanics Science and Technology: An International Journal, 7:3 (2016), 177–233 | DOI | MR
[46] Lychev S., Koifman K., “Nonlinear evolutionary problem for a laminated inhomogeneous spherical shell”, Acta Mechanica, 230:11 (2019), 3989–4020 | DOI | MR | Zbl
[47] Lychev S.A., Kostin G.V., Lycheva T.N., Koifman K.G., “Non-Euclidean Geometry and Defected Structure for Bodies with Variable Material Composition”, Journal of Physics: Conference Series, 1250 (2019), 012035 | DOI
[48] Sozio F., Yavari A., “Nonlinear mechanics of accretion”, Journal of Nonlinear Science, 29:4 (2019), 1813–1863 | DOI | MR | Zbl
[49] Bout D.K., Bychkov P.S., Lychev S.A., “The theoretical and experimental study of the bending of a thin substrate during electrolytic deposition”, PNRPU Mechanics Bulletin, 2020, no. 1, 17–31 (In Russ.) | DOI
[50] Lychev S.A., Kostin G.V., Koifman K.G., Lycheva T.N., “Modeling and Optimization of Layer-by-Layer Structures”, Journal of Physics: Conference Series, 1009 (2018), 012014 | DOI
[51] Lychev S.A., Fekry M., “Residual stresses in a thermoelastic cylinder resulting from layer-by-layer surfacing”, Vestnik of Samara University. Natural Science Series, 26:3 (2020), 63–90 (In Russ.) | DOI | MR
[52] Lychev S.A., Fekry M., “Evaluation of residual stresses in additively produced thermoelastic cylinder. Part I. Thermal fields”, Mechanics of Advanced Materials and Structures, 30:10 (2023), 1975–1990 | DOI
[53] Lychev S.A., Fekry M., “Evaluation of residual stresses in additively produced thermoelastic cylinder. Part II. Residual stresses”, Mechanics of Advanced Materials and Structures, 30:10 (2023), 1991–2000 | DOI
[54] Fekry M., “Thermal stresses in growing thermoviscoelastic cylinder and their evolution in the course of selective laser melting processing”, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 103:2 (2023), e202100519 | DOI | MR
[55] Epstein M., Burton D.A., Tucker R., “Relativistic anelasticity”, Classical and Quantum Gravity, 23:10 (2006), 3545–3571 | DOI | MR | Zbl
[56] Lychev S., Koifman K., Bout D., “Finite Incompatible Deformations in Elastic Solids: Relativistic Approach”, Lobachevskii Journal of Mathematics, 43 (2022), 1908–1933 | DOI | MR | Zbl
[57] Lychev S., Koifman K., Pivovaroff N., “Incompatible Deformations in Relativistic Elasticity”, Lobachevskii Journal of Mathematics, 44:6 (2023), 2352–2397 | DOI | MR
[58] Lychev S.A., Koifman K.G., “Material Affine Connections for Growing Solids”, Lobachevskii Journal of Mathematics, 41:10 (2020), 2034–2052 | DOI | MR | Zbl
[59] Lychev S.A., Koifman K.G., “Geometric Aspects of the Theory of Incompatible Deformations. Part II. Strain and Stress Measures”, Nanomechanics Science and Technology: An International Journal, 10:2 (2019), 97–121 | DOI | MR
[60] Lychev S.A., Lycheva T.N., Koifman K.G., “The Nonlinear evolutionary problem for self-stressed multilayered hyperelastic spherical bodies”, PNRPU Mechanics Bulletin, 2020, no. 1, 43–59 (In Russ.) | DOI
[61] Lychev S., Koifman K., Djuzhev N., “Incompatible Deformations in Additively Fabricated Solids: Discrete and Continuous Approaches”, Symmetry, 13:12 (2021), 2331 | DOI
[62] Morgan A.J.A., “Inhomogeneous materially uniform higher order gross bodies”, Archive for Rational Mechanics and Analysis, 57 (1975), 189–253 | DOI | MR | Zbl
[63] El$\dot{z}$anowski M., Epstein M., “The symmetry group of second-grade materials”, International Journal of Non-Linear Mechanics, 27:4 (1992), 635–638 | DOI | MR
[64] de León M., Epstein M., “On the integrability of second-order G-structures with applications to continuous theories of dislocations”, Reports on Mathematical Physics, 33:3 (1993), 419–436 | DOI | MR | Zbl
[65] de León M., Epstein M., “The geometry of uniformity in second-grade elasticity”, Acta Mechanica, 114 (1996), 217–224 | DOI | MR | Zbl
[66] Epstein M., de León M., “Geometrical theory of uniform Cosserat media”, Journal of Geometry and Physics, 26 (1998), 127–170 | DOI | MR | Zbl
[67] Bucataru I., Epstein M., “Geometrical theory of dislocations in bodies with microstructure”, Journal of Geometry and Physics, 52:1 (2004), 57–73 | DOI | MR | Zbl
[68] Mac Lane S., Categories for the Working Mathematician, Fizmatlit, M., 2004, 154 pp. (In Russ.)
[69] Postnikov M.M., Lections in geometry. Semester I. Analytic geometry, URSS, M., 2017, 416 pp. (In Russ.)
[70] Postnikov M.M., Lections in geometry. Semester II. Linear algebra, URSS, M., 2017, 400 pp. (In Russ.)
[71] Lee J.M., Introduction to Smooth Manifolds, Springer, New York, 2012, 708 pp. | DOI | MR
[72] Koifman K.G., “Reference shape of bodies with enhanced kinematics. Part II. Second gradient and microstructure”, Vestnik Samarskogo universiteta. Estestvennonauchnaya seriia – Vestnik of Samara University. Natural Science Series, 29:4 (2023), 54–76 | MR
[73] Kellogg O.D., Foundations of Potential Theory, Springer Nature, Berlin–Heidelberg, 1967, 386 pp. | DOI | MR | Zbl
[74] Truesdell C., Noll W., The Non-Linear Field Theories of Mechanics, Springer Science Business Media, New York, 2004, 602 pp. | DOI | MR
[75] Truesdell C., Toupin R., “The Classical Field Theories”, Principles of Classical Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie, Encyclopedia of Physics / Handbuch der Physik, 2 / 3 / 1, ed. Flugge S., Springer, Berlin–Heidelberg | DOI | MR | Zbl
[76] Noll W., “Materially uniform simple bodies with inhomogeneities”, Archive for Rational Mechanics and Analysis, 27:1 (1967), 1–32 | DOI | MR
[77] Eckart C., “The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity”, Physical Review, 73:4 (1948), 373–382 | DOI | MR | Zbl
[78] Bilby B., Bullough R., Smith E., “Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 231:1185 (1955), 263–273 | DOI | MR
[79] Kondo K., “Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint”, Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, v. 1, ed. Kondo K., Division D-I, Gakujutsu Bunken Fukyo-Kai, 1955, 6–17 | MR
[80] Kondo K., “Non-Riemannian and Finslerian approaches to the theory of yielding”, International Journal of Engineering Science, 1:1 (1963), 71–88 | DOI | Zbl
[81] Marsden J.E., Hughes T.J., Mathematical foundations of elasticity, Courier Corporation, New York, 1994, 576 pp. https://archive.org/details/mathematicalfoun00mars | MR
[82] Bourbaki N., Theory of Sets, Mir, M., 1965, 456 pp. (In Russ.)
[83] Schwartz L., Analysis, v. 1, Mir, M., 1972, 824 pp. (In Russ.)
[84] Lychev S.A., Koifman K.G., “Contorsion of Material Connection in Growing Solids”, Lobachevskii Journal of Mathematics, 42:8 (2021), 1852–1875 | DOI | MR | Zbl
[85] Miri M., Rivier N., “Continuum elasticity with topological defects, including dislocations and extra-matter”, Journal of Physics A: Mathematical and General, 35:7 (2002), 1727–1739 | DOI | MR | Zbl
[86] Postnikov M.M., Lections in geometry. Semester V: Riemannian geometry, Faktorial, M., 1998, 496 pp. (In Russ.)
[87] Postnikov M.M., Lections in geometry. Semester IV. Differential geometry, URSS, M., 2017, 504 pp. (In Russ.)
[88] Fernandez O.E., Bloch A.M., “The Weitzenböck Connection and Time Reparameterization in Nonholonomic Mechanics”, Journal of Mathematical Physics, 52:1 (2011), 012901 | DOI | MR | Zbl
[89] Kartan E., Spaces of affine, projective and conformal connection, Izd-vo Kazanskogo universiteta, Kazan, 1962, 210 pp. (In Russ.) | MR
[90] Kartan E., Riemannian geometry in an orthogonal frame, Nauka, M., 1960, 207 pp. (In Russ.)
[91] Kartan E., Geometry of Riemannian spaces, Knizhnyi dom «Librokom», M., 2010, 248 pp. (In Russ.)
[92] Dhas B., Srinivasa A., Roy D., A Weyl geometric model for thermo-mechanics of solids with metrical defects, 2019, arXiv: 1904.06956 | DOI