Subharmonic envelopes for functions on domains
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 64-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the most common problems in various fields of real and complex analysis is the questions of the existence and construction for a given function of an envelope from below or from above of a function from a special class $H$. We consider a case when $H$ is the convex cone of all subharmonic functions on the domain $D$ of a finite-dimensional Euclidean space over the field of real numbers. For a pair of subharmonic functions $u$ and $M$ from this convex cone $H$, dual necessary and sufficient conditions are established under which there is a subharmonic function $h\not\equiv -\infty$, “dampening the growth” of the function $u$ in the sense that the values of the sum of $u+h$ at each point of $D$ is not greater than the value of the function $M$ at the same point. These results are supposed to be applied in the future to questions of non-triviality of weight classes of holomorphic functions, to the description of zero sets and uniqueness sets for such classes, to approximation problems of the function theory, etc.
Keywords: subharmonic function, lower envelope, ordered space, vector lattice, projective limit, linear balayage, Jensen measure, holomorphic function.
@article{VSGU_2023_29_3_a7,
     author = {B. N. Khabibullin},
     title = {Subharmonic envelopes for functions on domains},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {64--71},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a7/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Subharmonic envelopes for functions on domains
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 64
EP  - 71
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a7/
LA  - ru
ID  - VSGU_2023_29_3_a7
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Subharmonic envelopes for functions on domains
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 64-71
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a7/
%G ru
%F VSGU_2023_29_3_a7
B. N. Khabibullin. Subharmonic envelopes for functions on domains. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 64-71. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a7/

[1] Hayman W.K., Kennedy P.B., Subharmonic functions, v. 1, Mir, M., 1994, 304 pp. (In Russ.)

[2] Hörmander L., Notions of Convexity, Birkhäser, Boston, 1994, 416 pp. | DOI | MR | Zbl

[3] Evans L.C., Gariepy R.F., Measure Theory and Fine Properties of Functions, Nauchnaya kniga (IDMI), Novosibirsk, 2002, 215 pp. (In Russ.)

[4] Khabibullin B.N., Rozit A.P., Khabibullina E.B., “Order versions of the Hahn–Banach theorem and envelopes. II. Applications to the function theory”, Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki, Ser. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI RAN, M., 2019, 93–135 (In Russ.)

[5] Khabibullin B.N., Envelopes in the function theory, RITs BashGU, Ufa, 2021, 140 pp. (In Russ.)

[6] Khabibullin B.N. Dual representation of superlinear functionals and its applications in function theory. II, Izvestiya: Mathematics, 65:5 (2001), 1017–1039 (In English; original in Russian) | DOI | DOI | MR | Zbl

[7] Kutateladze S. S., Rubinov A. M., Minkowski duality and its applications, Nauka, Novosibirsk, 1976, 254 pp.

[8] Akilov G. P., Kutateladze S. S., Ordered vector spaces, Nauka, Novosibirsk, 1978, 368 pp. (In Russ.)

[9] Bu S., Schachermayer W., “Approximation of Jensen Measures by Image Measures under Holomorphic Functions and Applications”, Transactions of the American Mathematical Society, 331:2 (1992), 585–608 | DOI | MR | Zbl

[10] Poletsky E. A., “Disk envelopes of functions, II”, Journal of Functional Analysis, 163:1 (1999), 111–132 | DOI | MR | Zbl

[11] Cole B. J., Ransford T. J., “Subharmonicity without Upper Semicontinuity”, Journal of Functional Analysis, 147:2 (1997), 420–442 | DOI | MR | Zbl

[12] Arsove M. G., “Functions representable as differences of subharmonic functions”, Transactions of the American Mathematical Society, 75 (1953), 327–365 | DOI | MR | Zbl