@article{VSGU_2023_29_3_a6,
author = {M. A. Smetannikov},
title = {Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {57--63},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a6/}
}
TY - JOUR AU - M. A. Smetannikov TI - Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 57 EP - 63 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a6/ LA - ru ID - VSGU_2023_29_3_a6 ER -
%0 Journal Article %A M. A. Smetannikov %T Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 57-63 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a6/ %G ru %F VSGU_2023_29_3_a6
M. A. Smetannikov. Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 57-63. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a6/
[1] Sobolev V.A., Shchepakina E.A., Reduction of models and critical phenomena in macrokinetics, Fizmatlit, M., 2010, 320 pp. (In Russ.)
[2] Murray J.D., Mathematical Biology I. An Introduction, Springer, New York, 2001, 551 pp. | DOI | MR
[3] Voropaeva N.V., Sobolev V.A., Geometric decomposition of singularly perturbed systems, Fizmatlit, M., 2009, 256 pp. (In Russ.)
[4] Strygin V.V., Sobolev V.A., Separation of motions by the method of integral manifolds, Nauka, M., 1988, 256 pp. (In Russ.) | MR
[5] Goldshtein V.M., Sobolev V.A., Qualitative analysis of singularly perturbed systems, In-t matematiki AN SSSR, Sib. otd-nie, Novosibirsk, 1988, 154 pp.
[6] Shchepakina E.A., “Integral manifolds, duck trajectories and heat explosion”, Vestnik of Samara University, 1995, Special edition, 10–19 (In Russ.)
[7] Shchepakina E., Sobolev V., “Integral manifolds, canards and black swans”, Nonlinear Analysis: Theory, Methods Applications, 44:7 (2001), 897–908 | DOI | MR | Zbl
[8] Sobolev V.A., “Integral manifolds and decomposition of singulary perturbed system”, Systems Control Letters, 5:3 (1984), 169–179 | DOI | MR | Zbl
[9] Mitropolskiy U.A., Lykova O.B., Integral manifolds in nonlinear mechanics, Nauka, M., 1973, 512 pp. (In Russ.)
[10] Knobloch H.-W., Aulbach B., “Singular perturbations and integral manifolds”, Journal of Mathematical and Physical Sciences, 18:5 (1984), 415–424 | MR | Zbl
[11] Seiler N., Jung M.J., Koch-Weser J., Enzyme-activated Irreversible Inhibitors, Elsevier/North-Holland, Amsterdam, 1978, 426 pp.
[12] Walsh C.T., “Suicide substrates, mechanism-based enzyme inactivators: recent developments”, Annual Review of Biochemistry, 53 (1984), 493–535 | DOI
[13] Berding C., Keymer A.E., Murray J.D., Slater A.F.G., “The population dynamics of acquired immunity to helminth infections”, Journal of Theoretical Biology, 122:4 (1986), 459–471 | DOI | MR
[14] Bobylev N.A., Emelyanov S.V., Korovin S.K., Geometric methods in variational problems, Magistr, M., 1998, 658 pp. (In Russ.)
[15] Emelyanov S.V., Korovin S.K., Mamedov I.V., “Structural transformations and spatial decomposition of discrete controlled systems: quasi-decoupling method”, Tekhn. kibern., 1986, no. 6, 118–128 (In Russ.)
[16] Korovin S.K., Mamedov I.G., Mamedova A.P., “Uniform over a small parameter stability and stabilization of discrete singularly perturbed dynamic systems”, Tekhn. kibern., 1989, no. 1, 21–29 (In Russ.) | Zbl
[17] Tikhonov A.N., “Systems of differential equations containing small parameters in the derivatives”, Matematicheskii Sbornik. Novaya Seriya, 31(73) (1952), 575–586 (In Russ.) | Zbl
[18] Zadiraka K.V., “On the nonlocal integral manifold of an irregularly perturbed differential system”, Ukrainian Mathematical Journal, 17:1 (1965), 47–63 (In Russ.) | MR | Zbl