Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 57-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this work is to reduce the singularly perturbed system of kinetics of a suicidal substrate. Methods of decomposition and integral manifolds are used. The dimension of the original problem is reduced. The obtained equations on the integral manifold are analyzed for stability. An example is given of comparing the numerical solutions of the original system and those obtained after reducing the dimensionality using the above methods.
Keywords: differential equations, decomposition method, integral manifolds, cooperative phenomenon, enzyme kinetics, suicide substrate.
@article{VSGU_2023_29_3_a6,
     author = {M. A. Smetannikov},
     title = {Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {57--63},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a6/}
}
TY  - JOUR
AU  - M. A. Smetannikov
TI  - Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 57
EP  - 63
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a6/
LA  - ru
ID  - VSGU_2023_29_3_a6
ER  - 
%0 Journal Article
%A M. A. Smetannikov
%T Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 57-63
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a6/
%G ru
%F VSGU_2023_29_3_a6
M. A. Smetannikov. Application of decomposition and integral manifolds to the singularly perturbed problem of kinetics of suicide substrate. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 57-63. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a6/

[1] Sobolev V.A., Shchepakina E.A., Reduction of models and critical phenomena in macrokinetics, Fizmatlit, M., 2010, 320 pp. (In Russ.)

[2] Murray J.D., Mathematical Biology I. An Introduction, Springer, New York, 2001, 551 pp. | DOI | MR

[3] Voropaeva N.V., Sobolev V.A., Geometric decomposition of singularly perturbed systems, Fizmatlit, M., 2009, 256 pp. (In Russ.)

[4] Strygin V.V., Sobolev V.A., Separation of motions by the method of integral manifolds, Nauka, M., 1988, 256 pp. (In Russ.) | MR

[5] Goldshtein V.M., Sobolev V.A., Qualitative analysis of singularly perturbed systems, In-t matematiki AN SSSR, Sib. otd-nie, Novosibirsk, 1988, 154 pp.

[6] Shchepakina E.A., “Integral manifolds, duck trajectories and heat explosion”, Vestnik of Samara University, 1995, Special edition, 10–19 (In Russ.)

[7] Shchepakina E., Sobolev V., “Integral manifolds, canards and black swans”, Nonlinear Analysis: Theory, Methods Applications, 44:7 (2001), 897–908 | DOI | MR | Zbl

[8] Sobolev V.A., “Integral manifolds and decomposition of singulary perturbed system”, Systems Control Letters, 5:3 (1984), 169–179 | DOI | MR | Zbl

[9] Mitropolskiy U.A., Lykova O.B., Integral manifolds in nonlinear mechanics, Nauka, M., 1973, 512 pp. (In Russ.)

[10] Knobloch H.-W., Aulbach B., “Singular perturbations and integral manifolds”, Journal of Mathematical and Physical Sciences, 18:5 (1984), 415–424 | MR | Zbl

[11] Seiler N., Jung M.J., Koch-Weser J., Enzyme-activated Irreversible Inhibitors, Elsevier/North-Holland, Amsterdam, 1978, 426 pp.

[12] Walsh C.T., “Suicide substrates, mechanism-based enzyme inactivators: recent developments”, Annual Review of Biochemistry, 53 (1984), 493–535 | DOI

[13] Berding C., Keymer A.E., Murray J.D., Slater A.F.G., “The population dynamics of acquired immunity to helminth infections”, Journal of Theoretical Biology, 122:4 (1986), 459–471 | DOI | MR

[14] Bobylev N.A., Emelyanov S.V., Korovin S.K., Geometric methods in variational problems, Magistr, M., 1998, 658 pp. (In Russ.)

[15] Emelyanov S.V., Korovin S.K., Mamedov I.V., “Structural transformations and spatial decomposition of discrete controlled systems: quasi-decoupling method”, Tekhn. kibern., 1986, no. 6, 118–128 (In Russ.)

[16] Korovin S.K., Mamedov I.G., Mamedova A.P., “Uniform over a small parameter stability and stabilization of discrete singularly perturbed dynamic systems”, Tekhn. kibern., 1989, no. 1, 21–29 (In Russ.) | Zbl

[17] Tikhonov A.N., “Systems of differential equations containing small parameters in the derivatives”, Matematicheskii Sbornik. Novaya Seriya, 31(73) (1952), 575–586 (In Russ.) | Zbl

[18] Zadiraka K.V., “On the nonlocal integral manifold of an irregularly perturbed differential system”, Ukrainian Mathematical Journal, 17:1 (1965), 47–63 (In Russ.) | MR | Zbl