Recurrent identities for two special functions of hypergeometric type
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 37-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents conclusions and proofs of Gauss-type identities for two known hypergeometric type functions. For the derivation and justification of formulas, the representation of functions in the form of a series is used, as well as an integral representation of the functions under consideration. The article uses the definition and properties of gamma and beta functions, the hypergeometric Gauss function, as well as known identities for these functions. Hypergeometric functions are widely used in solving various types of differential equations. The presence of identities connecting the functions involved in the resulting formulas of solutions greatly simplifies both the final formulas and intermediate calculations in many problems related to solving hyperbolic, elliptic and mixed types of equations.
Keywords: special functions, gamma function, beta function, Gaussian function, identity, hypergeometric function
Mots-clés : formula, solution.
@article{VSGU_2023_29_3_a5,
     author = {S. V. Podkletnova},
     title = {Recurrent identities for two special functions of hypergeometric type},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {37--56},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a5/}
}
TY  - JOUR
AU  - S. V. Podkletnova
TI  - Recurrent identities for two special functions of hypergeometric type
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 37
EP  - 56
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a5/
LA  - ru
ID  - VSGU_2023_29_3_a5
ER  - 
%0 Journal Article
%A S. V. Podkletnova
%T Recurrent identities for two special functions of hypergeometric type
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 37-56
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a5/
%G ru
%F VSGU_2023_29_3_a5
S. V. Podkletnova. Recurrent identities for two special functions of hypergeometric type. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 37-56. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a5/

[1] Bateman H., Erdelyi A., Higher Transcendental Functions, v. 1, Nauka, M., 1973, 296 pp. (In Russ.)

[2] Bitsadze A.V., Mixed type equations, Izd-vo AN SSSR, M., 1959, 164 pp. (In Russ.)

[3] Volkodavov V.F., Nikolaev N.Ya., “On one special function of two arguments encountered in solving boundary value problems”, Analytical methods for solving differential equations, Kuibyshevskii gosudarstvennyi universitet, Kuibyshev, 1986, 42–46 (In Russ.)

[4] Gradstein I.S., Ryzhik I.M., Tables of integrals, sums, series and products, Fizmatgiz, M., 1963, 1100 pp. (In Russ.)

[5] Dobroslavsky A.V., Investigation of averaged spacecraft motions in a limited three-body problem taking into account light pressure forces, Candidate's of Physical and Mathematical Sciences thesis, M., 2021, 6 pp. (In Russ.) | Zbl

[6] Kuznetsov D.S., Special functions, Vysshaya shkola, M., 1965, 423 pp. (In Russ.)

[7] Petrosyan N.S., Special functions, textbook, FGBOU VO MGTU «STANKIN», M., 2015, 88 pp. (In Russ.)

[8] Podkletnova S.V., On new identities for a function ${{R}_{1}}$, VINITI, 21.04.92, No 1336-B92, KGPI, Kuibyshev (In Russ.)

[9] Podkletnova S.V., “On Gauss type identities for a function ${{R}_{1}}$ (Part I)”, Eurasian Union of Scientists, 2015, no. 9-5 (18), 140–145 (In Russ.)

[10] Ferriet J. Kampe de, Campbell R., Petyo G., Vogel T., Functions of mathematical physics, Fizmatgiz, M., 1963, 102 pp. (In Russ.)