Mots-clés : simplex, homotopy, dimension.
@article{VSGU_2023_29_3_a4,
author = {M. V. Dolgopolov and T. F. Zhuraev},
title = {On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {31--36},
year = {2023},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a4/}
}
TY - JOUR AU - M. V. Dolgopolov AU - T. F. Zhuraev TI - On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 31 EP - 36 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a4/ LA - ru ID - VSGU_2023_29_3_a4 ER -
%0 Journal Article %A M. V. Dolgopolov %A T. F. Zhuraev %T On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 31-36 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a4/ %G ru %F VSGU_2023_29_3_a4
M. V. Dolgopolov; T. F. Zhuraev. On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 31-36. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a4/
[1] Banakh T., Radul T., Zarichny M., Absorbing sets in infinite-dimensional manifolds, Mathematical Studies Monograph Series, 1, VNTL Publishers, L'viv, 1996, 232 pp. | MR | Zbl
[2] Banakh T.O., Radul T.N. Topology of spaces of probability measures, Sbornik: Mathematics, 188:7 (1997), 973–995 | DOI | MR | Zbl
[3] Banakh T., Sakai K., “Characterizations of ($R^\infty,\sigma$)- or ($Q^\infty,\Sigma$)-manifolds and their applications”, Topology and its Applications, 106:2 (2000), 115–134 | DOI | MR | Zbl
[4] Newton Nigel J., “Infinite-dimensional statistical manifolds based on a balanced chart”, Bernoulli, 22:2 (2016), 711–731 | DOI | MR | Zbl
[5] Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O., “Some values subfunctors of functor probalities measures in the categories Comp”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 24:2 (2018), 28–32 | DOI | MR | Zbl
[6] Zhuraev T.F. et al., “On Some Homotopically Dense Subspaces of the Space P(X) of Probability Measures Defined by an Infinite Metric Compact Set X”, Journal of Pharmaceutical Negative Results, 13, Special Issue 3 (2022), 1768–1773 | DOI | MR
[7] Zhuraev T.F., Dolgopolov M.V., “Equivariant properties of the space Z(X) for a stratifiable space X”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 29:2 (2023), 40–47 | DOI | MR
[8] Zhuraev T.F., Zhuvonov K.R., Gaimnazarov O.G., Anorboev M.M., Saitmuratov U.N., “Homotopically dense properties of the Alexandrov compactification of some subspaces of the space of probability measures”, European Chemical Bulletin, 12, Special Issue 6 (2023), 2343–2355 https://www.eurchembull.com/uploads/paper/5d4861149c35a43d2bb1a6a141330bea.pdf
[9] Zhuraev T.F., Tursunova Z.O., “On some geometric and topological properties of probability measures defined in an infinite compact”, Uzbek Mathematical Journal, 2016, no. 1, 39–48 (In Russ.)
[10] Zhuraev T.F., Some geometric properties of the functor of probabilistic measures and its subfunctors, Candidate of Physical and Mathematical Sciences thesis, MGU, M., 1989, 90 pp. (In Russ.)
[11] Fedorchuk V.V., “Probability measures in topology”, Russian Mathematical Surveys, 46:1 (1991), 45–93 | DOI | MR | Zbl