On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 31-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this short communication we prove that the subspace $P_{n,n-1} (X)$ of all probability measures $P(X)$, whose supports consist of exactly $n$ points is an $(n-1)$-dimensional topological manifold. A number of subspaces of the space of all probability measures having infinite dimension in the sense of dim, which are manifolds, are identified. We also consider individual subsets of the infinite compact set $\mathrm{X}$, on which the space of probability measures is homotopy dense in the entire space. Three theorems on the topological properties of manifolds—subspaces of homotopy dense probability measures in the space of probability measures with finite supports on a compactum—are formulated and proven, and special cases of finite and infinite compactums are considered.
Keywords: subspace, probability measure, carrier, topological manifold, compact, functor, homotopically dense subspace
Mots-clés : simplex, homotopy, dimension.
@article{VSGU_2023_29_3_a4,
     author = {M. V. Dolgopolov and T. F. Zhuraev},
     title = {On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {31--36},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a4/}
}
TY  - JOUR
AU  - M. V. Dolgopolov
AU  - T. F. Zhuraev
TI  - On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 31
EP  - 36
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a4/
LA  - ru
ID  - VSGU_2023_29_3_a4
ER  - 
%0 Journal Article
%A M. V. Dolgopolov
%A T. F. Zhuraev
%T On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 31-36
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a4/
%G ru
%F VSGU_2023_29_3_a4
M. V. Dolgopolov; T. F. Zhuraev. On euclidean manifolds being a subspace of the space of probability measures with finite supports to a certain infinite compact set of dimension zero. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 31-36. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a4/

[1] Banakh T., Radul T., Zarichny M., Absorbing sets in infinite-dimensional manifolds, Mathematical Studies Monograph Series, 1, VNTL Publishers, L'viv, 1996, 232 pp. | MR | Zbl

[2] Banakh T.O., Radul T.N. Topology of spaces of probability measures, Sbornik: Mathematics, 188:7 (1997), 973–995 | DOI | MR | Zbl

[3] Banakh T., Sakai K., “Characterizations of ($R^\infty,\sigma$)- or ($Q^\infty,\Sigma$)-manifolds and their applications”, Topology and its Applications, 106:2 (2000), 115–134 | DOI | MR | Zbl

[4] Newton Nigel J., “Infinite-dimensional statistical manifolds based on a balanced chart”, Bernoulli, 22:2 (2016), 711–731 | DOI | MR | Zbl

[5] Zhuraev T.F., Rakhmatullaev A.Kh., Tursunova Z.O., “Some values subfunctors of functor probalities measures in the categories Comp”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 24:2 (2018), 28–32 | DOI | MR | Zbl

[6] Zhuraev T.F. et al., “On Some Homotopically Dense Subspaces of the Space P(X) of Probability Measures Defined by an Infinite Metric Compact Set X”, Journal of Pharmaceutical Negative Results, 13, Special Issue 3 (2022), 1768–1773 | DOI | MR

[7] Zhuraev T.F., Dolgopolov M.V., “Equivariant properties of the space Z(X) for a stratifiable space X”, Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 29:2 (2023), 40–47 | DOI | MR

[8] Zhuraev T.F., Zhuvonov K.R., Gaimnazarov O.G., Anorboev M.M., Saitmuratov U.N., “Homotopically dense properties of the Alexandrov compactification of some subspaces of the space of probability measures”, European Chemical Bulletin, 12, Special Issue 6 (2023), 2343–2355 https://www.eurchembull.com/uploads/paper/5d4861149c35a43d2bb1a6a141330bea.pdf

[9] Zhuraev T.F., Tursunova Z.O., “On some geometric and topological properties of probability measures defined in an infinite compact”, Uzbek Mathematical Journal, 2016, no. 1, 39–48 (In Russ.)

[10] Zhuraev T.F., Some geometric properties of the functor of probabilistic measures and its subfunctors, Candidate of Physical and Mathematical Sciences thesis, MGU, M., 1989, 90 pp. (In Russ.)

[11] Fedorchuk V.V., “Probability measures in topology”, Russian Mathematical Surveys, 46:1 (1991), 45–93 | DOI | MR | Zbl