On homotopically dense subspaces of the space of complete linked systems
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 24-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article discusses the topological and geometric properties of the set of coupled systems and the properties of its subspaces that are homotopically dense. Theorems for a metrizable nondegenerate continuum are presented, conditions for a homotopically dense set of a compact set and conditions for determining a manifold for a finite-dimensional set depending on the fact that it does not contain a Hilbert cube are determined.
Keywords: subspace, topological properties of a set, geometric properties of a set, topological variety, homotopy dense subspace, metrizable non-degenerate continuum, finite-dimensional set, Hilbert cube.
@article{VSGU_2023_29_3_a3,
     author = {M. V. Dolgopolov and K. R. Zhuvonov},
     title = {On homotopically dense subspaces of the space of complete linked systems},
     journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
     pages = {24--30},
     year = {2023},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a3/}
}
TY  - JOUR
AU  - M. V. Dolgopolov
AU  - K. R. Zhuvonov
TI  - On homotopically dense subspaces of the space of complete linked systems
JO  - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
PY  - 2023
SP  - 24
EP  - 30
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a3/
LA  - ru
ID  - VSGU_2023_29_3_a3
ER  - 
%0 Journal Article
%A M. V. Dolgopolov
%A K. R. Zhuvonov
%T On homotopically dense subspaces of the space of complete linked systems
%J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ
%D 2023
%P 24-30
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a3/
%G ru
%F VSGU_2023_29_3_a3
M. V. Dolgopolov; K. R. Zhuvonov. On homotopically dense subspaces of the space of complete linked systems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 24-30. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a3/

[1] Van Mill J., “Superextensions of metrizable continua are Hilbert cubes”, Fundamenta Mathematicae, 107:3 (1980), 201–224 https://bibliotekanauki.pl/articles/1363946 | DOI | MR | Zbl

[2] Van de Vel M., “Convex Hilbert cubes in superextensions”, Topology and its Applications, 22:3 (1986), 255–266 | DOI | MR | Zbl

[3] Ivanov A.V., “A space of complete linked systems”, Siberian Mathematical Journal, 27:6 (1986), 863–875 (In English; original in Russian) | DOI | MR | Zbl

[4] Beshimov R.V., Mukhammadiyev F.G., “Some cardinal properties of complete linked systems with compact elements and absolute regular spaces”, Mathematica Aeterna, 3:8 (2013), 625–633 https://www.longdom.org/articles/some-cardinal-properties-of-complete-linked-systems-with-compact-elements-and-absolute-regular-spaces.pdf | MR | Zbl

[5] Bessaga C., Pelczynski A., Selected Topics in Infinite-dimensional Topology, Monografie matematyczne, 58, PWN-Polish Scientific Publisher, Warsaw, 1975, 353 pp. https://onlybooks.org/selected- topics-in-infinite-dimensional-topology-monografie-matematyczne-no-58 | MR | Zbl

[6] Makhmud T., Cardinal-valued invariants of spaces of linked systems, Candidate thesis in Physics and Mathematics, Moscow State University, M., 1993, 87 pp.

[7] Bogatyi S.A., Fedorchuk V.V., “Theory of retracts and infinite-dimensional manifolds”, Journal of Soviet Mathematics, 44:3, 372–423 (In English; original in Russian) | DOI | MR | Zbl

[8] Zhuraev T.F., Geometric and topological properties spaces which value some covariant functors, Doctoral of Physical and Mathematical Sciences thesis, Institut matematiki imeni V.I. Romanovskogo AN Respubliki Uzbekistan, Tashkent, 198 pp. (In Russ.) | Zbl

[9] Banakh T., Radul T., Zarichny M., Absorbing sets in infinite-dimensional manifolds, Mathematical Studies Monograph Series, 1, VNTL Publishers, L'viv, 1996, 232 pp. | MR | Zbl

[10] Fedorchuk V.V., “Weakly infinite-dimensional spaces”, Russian Mathematical Surveys, 62:2(374) (2007), 109–164 (In English; original in Russian) | DOI | DOI | MR | Zbl