On homotopically dense subspaces of the space of complete linked systems
Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 24-30
Voir la notice de l'article provenant de la source Math-Net.Ru
This article discusses the topological and geometric properties of the set of coupled systems and the properties of its subspaces that are homotopically dense. Theorems for a metrizable nondegenerate continuum are presented, conditions for a homotopically dense set of a compact set and conditions for determining a manifold for a finite-dimensional set depending on the fact that it does not contain a Hilbert cube are determined.
Keywords:
subspace, topological properties of a set, geometric properties of a set, topological variety, homotopy dense subspace, metrizable non-degenerate continuum, finite-dimensional set, Hilbert cube.
@article{VSGU_2023_29_3_a3,
author = {M. V. Dolgopolov and K. R. Zhuvonov},
title = {On homotopically dense subspaces of the space of complete linked systems},
journal = {Vestnik Samarskogo universiteta. Estestvennonau\v{c}na\^a seri\^a},
pages = {24--30},
publisher = {mathdoc},
volume = {29},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a3/}
}
TY - JOUR AU - M. V. Dolgopolov AU - K. R. Zhuvonov TI - On homotopically dense subspaces of the space of complete linked systems JO - Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ PY - 2023 SP - 24 EP - 30 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a3/ LA - ru ID - VSGU_2023_29_3_a3 ER -
%0 Journal Article %A M. V. Dolgopolov %A K. R. Zhuvonov %T On homotopically dense subspaces of the space of complete linked systems %J Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ %D 2023 %P 24-30 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a3/ %G ru %F VSGU_2023_29_3_a3
M. V. Dolgopolov; K. R. Zhuvonov. On homotopically dense subspaces of the space of complete linked systems. Vestnik Samarskogo universiteta. Estestvennonaučnaâ seriâ, Tome 29 (2023) no. 3, pp. 24-30. http://geodesic.mathdoc.fr/item/VSGU_2023_29_3_a3/